Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232932

RESUMEN

Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone's accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Mutación , Enfermedades de las Plantas/genética , Pseudomonas syringae , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Physiol ; 187(4): 2451-2468, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599589

RESUMEN

Plant glutathione S-transferases (GSTs) are glutathione-dependent enzymes with versatile functions, mainly related to detoxification of electrophilic xenobiotics and peroxides. The Arabidopsis (Arabidopsis thaliana) genome codes for 53 GSTs, divided into seven subclasses; however, understanding of their precise functions is limited. A recent study showed that class II TGA transcription factors TGA2, TGA5, and TGA6 are essential for tolerance of UV-B-induced oxidative stress and that this tolerance is associated with an antioxidative function of cytosolic tau-GSTs (GSTUs). Specifically, TGA2 controls the expression of several GSTUs under UV-B light, and constitutive expression of GSTU7 in the tga256 triple mutant is sufficient to revert the UV-B-susceptible phenotype of tga256. To further study the function of GSTU7, we characterized its role in mitigation of oxidative damage caused by the herbicide methyl viologen (MV). Under non-stress conditions, gstu7 null mutants were smaller than wild-type (WT) plants and delayed in the onset of the MV-induced antioxidative response, which led to accumulation of hydrogen peroxide and diminished seedling survival. Complementation of gstu7 by constitutive expression of GSTU7 rescued these phenotypes. Furthermore, live monitoring of the glutathione redox potential in intact cells with the fluorescent probe Grx1-roGFP2 revealed that GSTU7 overexpression completely abolished the MV-induced oxidation of the cytosolic glutathione buffer compared with WT plants. GSTU7 acted as a glutathione peroxidase able to complement the lack of peroxidase-type GSTs in yeast. Together, these findings show that GSTU7 is crucial in the antioxidative response by limiting oxidative damage and thus contributes to oxidative stress resistance in the cell.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Glutatión Transferasa/genética , Herbicidas/efectos adversos , Estrés Oxidativo , Paraquat/efectos adversos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Glutatión Transferasa/metabolismo
3.
Plant Physiol ; 186(1): 125-141, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33793922

RESUMEN

Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Arabidopsis/efectos de los fármacos , Técnicas Biosensibles , Cloroplastos/efectos de los fármacos , Herbicidas/efectos adversos , Oxidación-Reducción , Paraquat/efectos adversos , Plantones/efectos de los fármacos , Plantones/metabolismo
4.
J Exp Bot ; 72(5): 1891-1905, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33188435

RESUMEN

Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés Oxidativo , Factores de Transcripción , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Plants ; 4(10): 811-823, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250280

RESUMEN

NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors. Our results demonstrate that, in response to low temperature, cytoplasmic NPR1 oligomers release monomers that translocate to the nucleus where they interact with heat shock transcription factor 1 (HSFA1) to promote the induction of HSFA1-regulated genes and cold acclimation. These findings unveil an unexpected function for NPR1 in plant response to low temperature, reveal a new regulatory pathway for cold acclimation mediated by NPR1 and HSFA1 factors, and place NPR1 as a central hub integrating cold and pathogen signalling for a better adaptation of plants to an ever-changing environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Aclimatación , Arabidopsis/metabolismo , Arabidopsis/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/metabolismo , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo
6.
Plant Physiol ; 176(3): 2515-2531, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438088

RESUMEN

Salicylic acid (SA) is a major defense signal in plants. In Arabidopsis (Arabidopsis thaliana), the chloroplast-localized isochorismate pathway is the main source of SA biosynthesis during abiotic stress or pathogen infections. In the first step of the pathway, the enzyme ISOCHORISMATE SYNTHASE1 (ICS1) converts chorismate to isochorismate. An unknown enzyme subsequently converts isochorismate to SA. Here, we show that ICS1 protein levels increase during UV-C stress. To identify proteins that may play roles in SA production by regulating ICS1, we analyzed proteins that coimmunoprecipitated with ICS1 via mass spectrometry. The ICS1 complexes contained a large number of peptides from the PROHIBITIN (PHB) protein family, with PHB3 the most abundant. PHB proteins have diverse biological functions that include acting as scaffolds for protein complex formation and stabilization. PHB3 was reported previously to localize to mitochondria. Using fractionation, protease protection, and live imaging, we show that PHB3 also localizes to chloroplasts, where ICS1 resides. Notably, loss of PHB3 function led to decreased ICS1 protein levels in response to UV-C stress. However, ICS1 transcript levels remain unchanged, indicating that ICS1 is regulated posttranscriptionally. The phb3 mutant displayed reduced levels of SA, the SA-regulated protein PR1, and hypersensitive cell death in response to UV-C and avirulent strains of Pseudomonas syringae and, correspondingly, supported increased growth of P. syringae The expression of a PHB3 transgene in the phb3 mutant complemented all of these phenotypes. We suggest a model in which the formation of PHB3-ICS1 complexes stabilizes ICS1 to promote SA production in response to stress.


Asunto(s)
Arabidopsis/metabolismo , Transferasas Intramoleculares/metabolismo , Proteínas Represoras/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Mitocondrias/metabolismo , Mutación , Plantas Modificadas Genéticamente , Prohibitinas , Pseudomonas syringae/patogenicidad , Proteínas Represoras/genética , Estrés Fisiológico , Rayos Ultravioleta
7.
Front Plant Sci ; 8: 964, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580008

RESUMEN

[This corrects the article on p. 171 in vol. 6, PMID: 25852720.].

8.
Mol Plant Microbe Interact ; 30(3): 215-230, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28118091

RESUMEN

Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.


Asunto(s)
Arabidopsis/microbiología , Burkholderia/fisiología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Arabidopsis/genética , Arabidopsis/inmunología , Biopelículas , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Mutación/genética , Oxilipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Transcripción Genética , Virulencia/genética
9.
J Exp Bot ; 67(14): 4209-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217545

RESUMEN

Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis.


Asunto(s)
Arabidopsis/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Tolerancia a la Sal/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
10.
Front Plant Sci ; 7: 238, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941775
11.
Plant Mol Biol Report ; 33: 624-637, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26696694

RESUMEN

Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.

12.
Front Plant Sci ; 6: 171, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852720

RESUMEN

It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.

13.
Mol Plant Microbe Interact ; 26(12): 1395-406, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24006883

RESUMEN

Salicylic acid (SA) is one of the key hormones that orchestrate the pathogen-induced immune response in plants. This response is often characterized by the activation of a local hypersensitive reaction involving programmed cell death, which constrains proliferation of biotrophic pathogens. Here, we report the identification and functional characterization of an SA-induced legume lectin-like protein 1 (SAI-LLP1), which is coded by a gene that belongs to the group of early SA-activated Arabidopsis genes. SAI-LLP1 expression is induced upon inoculation with avirulent strains of Pseudomonas syringae pv. tomato via an SA-dependent mechanism. Constitutive expression of SAI-LLP1 restrains proliferation of P. syringae pv. tomato Avr-Rpm1 and triggers more cell death in inoculated leaves. Cellular and biochemical evidence indicates that SAI-LLP1 is a glycoprotein located primarily at the apoplastic side of the plasma membrane. This work indicates that SAI-LLP1 is involved in resistance to P. syringae pv. tomato Avr-Rpm1 in Arabidopsis, as a component of the SA-mediated defense processes associated with the effector-triggered immunity response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Ácido Salicílico/farmacología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Glicoproteínas , Lectinas/genética , Lectinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/patogenicidad
14.
J Exp Bot ; 63(1): 503-15, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21963612

RESUMEN

Glutaredoxins (GRXs) belong to the antioxidant and signalling network involved in the cellular response to oxidative stress in bacterial and eukaryotic cells. In spite of the high number of GRX genes in plant genomes, the biological functions and physiological roles of most of them remain unknown. Here the functional characterization of the Arabidopsis GRXS13 gene (At1g03850), that codes for two CC-type GRX isoforms, is reported. The transcript variant coding for the GRXS13.2 isoform is predominantly expressed under basal conditions and is the isoform that is induced by photooxidative stress. Transgenic lines where the GRXS13 gene has been knocked down show increased basal levels of superoxide radicals and reduced plant growth. These lines also display reduced tolerance to methyl viologen (MeV) and high light (HL) treatments, both conditions of photooxidative stress characterized by increased production of superoxide ions. Consistently, lines overexpressing the GRXS13.2 variant show reduced MeV- and HL-induced damage. Alterations in GRXS13 expression also affect superoxide levels and the ascorbate/dehydroascorbate ratio after HL-induced stress. These results indicate that GRXS13 gene expression is critical for limiting basal and photooxidative stress-induced reactive oxygen species (ROS) production. Together, these results place GRXS13.2 as a member of the ROS-scavenging/antioxidant network that shows a particularly low functional redundancy in the Arabidopsis GRX family.


Asunto(s)
Arabidopsis/fisiología , Glutarredoxinas/fisiología , Estrés Oxidativo , Fotoquímica , Arabidopsis/genética , Secuencia de Bases , Cartilla de ADN , Plantas Modificadas Genéticamente
15.
Plant Physiol ; 157(3): 1114-27, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21921116

RESUMEN

Mitochondrial complex II (succinate dehydrogenase [SDH]) plays roles both in the tricarboxylic acid cycle and the respiratory electron transport chain. In Arabidopsis (Arabidopsis thaliana), its flavoprotein subunit is encoded by two nuclear genes, SDH1-1 and SDH1-2. Here, we characterize heterozygous SDH1-1/sdh1-1 mutant plants displaying a 30% reduction in SDH activity as well as partially silenced plants obtained by RNA interference. We found that these plants displayed significantly higher CO(2) assimilation rates and enhanced growth than wild-type plants. There was a strong correlation between CO(2) assimilation and stomatal conductance, and both mutant and silenced plants displayed increased stomatal aperture and density. By contrast, no significant differences were found for dark respiration, chloroplastic electron transport rate, CO(2) uptake at saturating concentrations of CO(2), or biochemical parameters such as the maximum rates of carboxylation by Rubisco and of photosynthetic electron transport. Thus, photosynthesis is enhanced in SDH-deficient plants by a mechanism involving a specific effect on stomatal function that results in improved CO(2) uptake. Metabolic and transcript profiling revealed that mild deficiency in SDH results in limited effects on metabolism and gene expression, and data suggest that decreases observed in the levels of some amino acids were due to a higher flux to proteins and other nitrogen-containing compounds to support increased growth. Strikingly, SDH1-1/sdh1-1 seedlings grew considerably better in nitrogen-limiting conditions. Thus, a subtle metabolic alteration may lead to changes in important functions such as stomatal function and nitrogen assimilation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Complejo II de Transporte de Electrones/metabolismo , Flavoproteínas/metabolismo , Mitocondrias/metabolismo , Nitrógeno/farmacología , Fotosíntesis/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flavoproteínas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas/genética , Cinética , Metaboloma/genética , Mitocondrias/efectos de los fármacos , Mutación/genética , Nitratos/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Succinato Deshidrogenasa/deficiencia , Succinato Deshidrogenasa/genética
16.
J Plant Physiol ; 168(4): 382-91, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20828873

RESUMEN

Plants are continuously exposed to pathogen challenge. The most common defense response to pathogenic microorganisms is the nonhost response, which is usually accompanied by transcriptional changes. In order to identify genes involved in nonhost resistance, we evaluated the tobacco transcriptome profile after infection with Xanthomonas axonopodis pv. citri (Xac), a nonhost phytopathogenic bacterium. cDNA-amplified fragment length polymorphism was used to identify differentially expressed transcripts in tobacco leaves infected with Xac at 2, 8 and 24h post-inoculation. From a total of 2087 transcript-derived fragments (TDFs) screened (approximately 20% of the tobacco transcriptome), 316 TDFs showed differential expression. Based on sequence similarities, 82 differential TDFs were identified and assigned to different functional categories: 56 displayed homology to genes with known functions, 12 to proteins with unknown functions and 14 did not have a match. Real-time PCR was carried out with selected transcripts to confirm the expression pattern obtained. The results reveal novel genes associated with nonhost resistance in plant-pathogen interaction in tobacco. These novel genes could be included in future strategies of molecular breeding for nonhost disease resistance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/inmunología , Enfermedades de las Plantas/inmunología , Transcriptoma , Xanthomonas axonopodis/inmunología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN Complementario/genética , Genes de Plantas/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Nicotiana/microbiología , Transcriptoma/genética , Xanthomonas axonopodis/patogenicidad
17.
Biochem Soc Trans ; 38(2): 672-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298241

RESUMEN

The snoRNAs (small nucleolar RNAs) and related scaRNAs (small RNAs in the Cajal bodies) represent a major class of nuclear RNAs that guide 2'-O-ribose methylation and pseudouridylation of rRNAs, snRNAs (small nuclear RNAs) and other RNA targets. In vivo, all snoRNAs associate with a set of four highly conserved nucleolar proteins, forming the functional snoRNPs (small nucleolar ribonucleoproteins). The core structure of these mature snoRNPs has now been well described in eukaryotes, but less is known of their biogenesis. Recent data in animals and yeast reveal that assembly of the snoRNPs is a complex process that implicates several auxiliary proteins and transient protein-protein interactions. This new level of snoRNP regulation is now beginning to be unravelled in animals and yeast, but remains unexplored in plants. In the present paper, we review recent data from genomic and functional analysis allowing the identification and study of factors controlling the biogenesis of plant snoRNPs and their impact on plant development.


Asunto(s)
Plantas/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/fisiología , Animales , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Cuerpos Enrollados/fisiología , Secuencia Conservada , Variación Genética , Modelos Biológicos , Plantas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo
18.
Plant Physiol ; 150(1): 84-95, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19261733

RESUMEN

Mitochondrial complex II (succinate dehydrogenase) is part of the tricarboxylic acid cycle and the respiratory chain. Three nuclear genes encode its essential iron-sulfur subunit in Arabidopsis (Arabidopsis thaliana). One of them, SUCCINATE DEHYDROGENASE2-3 (SDH2-3), is specifically expressed in the embryo during seed maturation, suggesting that SDH2-3 may have a role as the complex II iron-sulfur subunit during embryo maturation and/or germination. Here, we present data demonstrating that three abscisic acid-responsive elements and one RY-like enhancer element, present in the SDH2-3 promoter, are involved in embryo-specific SDH2-3 transcriptional regulation. Furthermore, we show that ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2, three key B3 domain transcription factors involved in gene expression during seed maturation, control SDH2-3 expression. Whereas ABI3 and FUS3 interact with the RY element in the SDH2-3 promoter, the abscisic acid-responsive elements are shown to be a target for bZIP53, a member of the basic leucine zipper (bZIP) family of transcription factors. We show that group S1 bZIP53 protein binds the promoter as a heterodimer with group C bZIP10 or bZIP25. To the best of our knowledge, the SDH2-3 promoter is the first embryo-specific promoter characterized for a mitochondrial respiratory complex protein. Characterization of succinate dehydrogenase activity in embryos from two homozygous sdh2-3 mutant lines permits us to conclude that SDH2-3 is the major iron-sulfur subunit of mature embryo complex II. Finally, the absence of SDH2-3 in mutant seeds slows down their germination, pointing to a role of SDH2-3-containing complex II at an early step of germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Hierro-Azufre/genética , Semillas/genética , Succinato Deshidrogenasa/genética , Factores de Transcripción/fisiología , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Sitios de Unión , Germinación/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/metabolismo , Factores de Transcripción/química
19.
Plant Mol Biol ; 70(1-2): 79-102, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19199050

RESUMEN

Salicylic acid (SA) is a stress-induced hormone involved in the activation of defense genes. Here we analyzed the early genetic responses to SA of wild type and npr1-1 mutant Arabidopsis seedlings, using Complete Arabidopsis Transcriptome MicroArray (CATMAv2) chip. We identified 217 genes rapidly induced by SA (early SAIGs); 193 by a NPR1-dependent and 24 by a NPR1-independent pathway. These two groups of genes also differed in their functional classification, expression profiles and over-representation of cis-elements, supporting differential pathways for their activation. Examination of the expression patterns for selected early SAIGs from both groups indicated that their activation by SA required TGA2/5/6 subclass of transcription factors. These genes were also activated by Pseudomonas syringae pv. tomato AvrRpm1, suggesting that they might play a role in defense against bacteria. This study gives a global idea of the early response to SA in Arabidopsis seedlings, expanding our knowledge about SA function in plant defense.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Ácido Salicílico/farmacología , Plantones/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Pseudomonas syringae/fisiología , ARN de Planta/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/microbiología , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional
20.
Mol Plant Pathol ; 10(2): 305-10, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19236577

RESUMEN

Plant suspension cell cultures display many features of the innate immune responses observed in planta and have been extensively applied to the study of basal and race-specific defences. However, no single model including photosynthetic cultured cells has been used for the exhaustive characterization of both basal and race-specific defences to date. In this article, we report the activation of basal and race-specific defences in green cultured cells from Arabidopsis thaliana. Inoculation of cultured cells with isogenic virulent or avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) was used to evaluate race-specific defences. The proliferation of avirulent Pst was found to be lower than that of virulent Pst in the inoculated cultures. Extracellular pH changes, sustained oxidative burst (5-13 h post-inoculation), enhancement of salicylic acid, and massive cell death were specifically stimulated by the avirulent bacterium. Neither avirulent nor virulent Pst induced markers of basal resistance, such as callose deposition or early oxidative burst (1-5 h post-inoculation). However, both basal defences were activated when cells were exposed to Pseudomonas syringae pv. phaseolicola or to the Pst mutant defective in the type III secretion system (TTSS), Pst-hrpL(-). Thus, in these cells, basal defences may be inhibited by Pst in a TTSS-dependent manner. Recapitulation of classical defence features demonstrates the usefulness of this system for the fine characterization of plant innate immune components.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Fotosíntesis , Arabidopsis/microbiología , Muerte Celular , Proliferación Celular , Células Cultivadas , Pseudomonas syringae/fisiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...