Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746185

RESUMEN

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

2.
BMC Genomics ; 25(1): 528, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807060

RESUMEN

BACKGROUND: Direct RNA sequencing (dRNA-seq) on the Oxford Nanopore Technologies (ONT) platforms can produce reads covering up to full-length gene transcripts, while containing decipherable information about RNA base modifications and poly-A tail lengths. Although many published studies have been expanding the potential of dRNA-seq, its sequencing accuracy and error patterns remain understudied. RESULTS: We present the first comprehensive evaluation of sequencing accuracy and characterisation of systematic errors in dRNA-seq data from diverse organisms and synthetic in vitro transcribed RNAs. We found that for sequencing kits SQK-RNA001 and SQK-RNA002, the median read accuracy ranged from 87% to 92% across species, and deletions significantly outnumbered mismatches and insertions. Due to their high abundance in the transcriptome, heteropolymers and short homopolymers were the major contributors to the overall sequencing errors. We also observed systematic biases across all species at the levels of single nucleotides and motifs. In general, cytosine/uracil-rich regions were more likely to be erroneous than guanines and adenines. By examining raw signal data, we identified the underlying signal-level features potentially associated with the error patterns and their dependency on sequence contexts. While read quality scores can be used to approximate error rates at base and read levels, failure to detect DNA adapters may be a source of errors and data loss. By comparing distinct basecallers, we reason that some sequencing errors are attributable to signal insufficiency rather than algorithmic (basecalling) artefacts. Lastly, we generated dRNA-seq data using the latest SQK-RNA004 sequencing kit released at the end of 2023 and found that although the overall read accuracy increased, the systematic errors remain largely identical compared to the previous kits. CONCLUSIONS: As the first systematic investigation of dRNA-seq errors, this study offers a comprehensive overview of reproducible error patterns across diverse datasets, identifies potential signal-level insufficiency, and lays the foundation for error correction methods.


Asunto(s)
Secuenciación de Nanoporos , Análisis de Secuencia de ARN , Análisis de Secuencia de ARN/métodos , Secuenciación de Nanoporos/métodos , Nanoporos , Humanos , Animales , ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561180

RESUMEN

SUMMARY: Sequence technology advancements have led to an exponential increase in bacterial genomes, necessitating robust taxonomic classification methods. The Percentage Of Conserved Proteins (POCP), proposed initially by Qin et al. (2014), is a valuable metric for assessing prokaryote genus boundaries. Here, I introduce a computational pipeline for automated POCP calculation, aiming to enhance reproducibility and ease of use in taxonomic studies. AVAILABILITY AND IMPLEMENTATION: The POCP-nf pipeline uses DIAMOND for faster protein alignments, achieving similar sensitivity to BLASTP. The pipeline is implemented in Nextflow with Conda and Docker support and is freely available on GitHub under https://github.com/hoelzer/pocp. The open-source code can be easily adapted for various prokaryotic genome and protein datasets. Detailed documentation and usage instructions are provided in the repository.


Asunto(s)
Células Procariotas , Programas Informáticos , Reproducibilidad de los Resultados , Genoma Bacteriano
4.
Database (Oxford) ; 20232023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847816

RESUMEN

With the rapidly growing amount of biological data, powerful but also flexible data management and visualization systems are of increasingly crucial importance. The COVID-19 pandemic has more than highlighted this need and the challenges scientists are facing. Here, we provide an example and a step-by-step template for non-IT personnel to easily implement an intuitive, interactive data management solution to manage and visualize the high influx of biological samples and associated metadata in a laboratory setting. Our approach is illustrated with the genomic surveillance for SARS-CoV-2 in Germany, covering over 11 600 internal and 130 000 external samples from multiple datasets. We compare three data management options used in laboratories: (i) simple, yet error-prone and inefficient spreadsheets, (ii) complex and long-to-implement laboratory information management systems and (iii) high-performance database management systems. We highlight the advantages and pitfalls of each option and outline why a document-oriented NoSQL option via MongoDB Atlas can be a suitable solution for many labs. Our example can be treated as a template and easily adapted to allow scientists to focus on their core work and not on complex data administration.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Genómica , Sistemas de Administración de Bases de Datos
5.
J Fungi (Basel) ; 9(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888270

RESUMEN

Neutrophils are critical phagocytic cells in innate immunity, playing a significant role in defending against invasive fungal pathogens. This study aimed to explore the transcriptional activation of human neutrophils in response to different fungal pathogens, including Candida albicans and Aspergillus fumigatus, compared to the bacterial pathogen Escherichia coli. We identified distinct transcriptional profiles and stress-related pathways in neutrophils during fungal infections, highlighting their functional diversity and adaptability. The transcriptional response was largely redundant across all pathogens in immune-relevant categories and cytokine pathway activation. However, differences in the magnitude of differentially expressed genes (DEGs) were observed, with A. fumigatus inducing a lower transcriptional effect compared to C. albicans and E. coli. Notably, specific gene signatures associated with cell death were differentially regulated by fungal pathogens, potentially increasing neutrophil susceptibility to autophagy, pyroptosis, and neutrophil extracellular trap (NET) formation. These findings provide valuable insights into the complex immunological responses of neutrophils during fungal infections, offering new avenues for diagnostic and therapeutic strategies, particularly in the management of invasive fungal diseases.

6.
J Virol ; 97(10): e0020523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37728614

RESUMEN

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Asunto(s)
Quirópteros , Receptores de Ácido Retinoico , SARS-CoV-2 , Animales , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , SARS-CoV-2/fisiología , Virus , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
7.
BMC Genomics ; 24(1): 548, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715127

RESUMEN

Mycoplasmopsis (M.) bovis, the agent of mastitis, pneumonia, and arthritis in cattle, harbors a small genome of approximately 1 Mbp. Combining data from Illumina and Nanopore technologies, we sequenced and assembled the genomes of 35 European strains and isolate DL422_88 from Cuba. While the high proportion of repetitive structures in M. bovis genomes represent a particular challenge, implementation of our own pipeline Mycovista (available on GitHub www.github.com/sandraTriebel/mycovista ) in a hybrid approach enabled contiguous assembly of the genomes and, consequently, improved annotation rates considerably. To put our European strain panel in a global context, we analyzed the new genome sequences together with 175 genome assemblies from public databases. Construction of a phylogenetic tree based on core genes of these 219 strains revealed a clustering pattern according to geographical origin, with European isolates positioned on clades 4 and 5. Genomic data allowing assignment of strains to tissue specificity or certain disease manifestations could not be identified. Seven strains isolated from cattle with systemic circular condition (SCC), still a largely unknown manifestation of M. bovis disease, were located on both clades 4 and 5. Pairwise association analysis revealed 108 genomic elements associated with a particular clade of the phylogenetic tree. Further analyzing these hits, 25 genes are functionally annotated and could be linked to a M. bovis protein, e.g. various proteases and nucleases, as well as ten variable surface lipoproteins (Vsps) and other surface proteins. These clade-specific genes could serve as useful markers in epidemiological and clinical surveys.


Asunto(s)
Genómica , Mycoplasma bovis , Femenino , Animales , Bovinos , Filogenia , Análisis por Conglomerados , Bases de Datos Factuales , Endonucleasas , Mycoplasma bovis/genética
8.
Emerg Microbes Infect ; 12(2): 2245916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37585712

RESUMEN

ABSTRACTGlobal and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Genómica
9.
PLoS Comput Biol ; 19(8): e1011422, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639475

RESUMEN

The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.


Asunto(s)
Eucariontes , Microbiota , Humanos , Células Eucariotas , Genoma Viral/genética , Metagenoma/genética
10.
BMC Genomics ; 24(1): 258, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173617

RESUMEN

BACKGROUND: Bacterial epidemiology needs to understand the spread and dissemination of strains in a One Health context. This is important for highly pathogenic bacteria such as Bacillus anthracis, Brucella species, and Francisella tularensis. Whole genome sequencing (WGS) has paved the way for genetic marker detection and high-resolution genotyping. While such tasks are established for Illumina short-read sequencing, Oxford Nanopore Technology (ONT) long-read sequencing has yet to be evaluated for such highly pathogenic bacteria with little genomic variations between strains. In this study, three independent sequencing runs were performed using Illumina, ONT flow cell version 9.4.1, and 10.4 for six strains of each of Ba. anthracis, Br. suis and F. tularensis. Data from ONT sequencing alone, Illumina sequencing alone and two hybrid assembly approaches were compared. RESULTS: As previously shown, ONT produces ultra-long reads, while Illumina produces short reads with higher sequencing accuracy. Flow cell version 10.4 improved sequencing accuracy over version 9.4.1. The correct (sub-)species were inferred from all tested technologies, individually. Moreover, the sets of genetic markers for virulence, were almost identical for the respective species. The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis. Assemblies based on nanopore data alone, Illumina data alone, and both hybrid assemblies correctly detected canonical (sub-)clades for Ba. anthracis and F. tularensis as well as multilocus sequence types for Br. suis. For F. tularensis, high-resolution genotyping using core-genome MLST (cgMLST) and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods. However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions. CONCLUSIONS: In summary, combining data from ONT and Illumina for high-resolution genotyping might be feasible for F. tularensis and Ba. anthracis, but not yet for Br. suis. The ongoing improvement of nanopore technology and subsequent data analysis may facilitate high-resolution genotyping for all bacteria with highly stable genomes in future.


Asunto(s)
Bacillus anthracis , Brucella suis , Francisella tularensis , Nanoporos , Francisella tularensis/genética , Brucella suis/genética , Bacillus anthracis/genética , Tipificación de Secuencias Multilocus , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
11.
BMC Genomics ; 24(1): 288, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248517

RESUMEN

BACKGROUND: Chlamydia (C.) psittaci, the causative agent of avian chlamydiosis and human psittacosis, is a genetically heterogeneous species. Its broad host range includes parrots and many other birds, but occasionally also humans (via zoonotic transmission), ruminants, horses, swine and rodents. To assess whether there are genetic markers associated with host tropism we comparatively analyzed whole-genome sequences of 61 C. psittaci strains, 47 of which carrying a 7.6-kbp plasmid. RESULTS: Following clean-up, reassembly and polishing of poorly assembled genomes from public databases, phylogenetic analyses using C. psittaci whole-genome sequence alignment revealed four major clades within this species. Clade 1 represents the most recent lineage comprising 40/61 strains and contains 9/10 of the psittacine strains, including type strain 6BC, and 10/13 of human isolates. Strains from different non-psittacine hosts clustered in Clades 2- 4. We found that clade membership correlates with typing schemes based on SNP types, ompA genotypes, multilocus sequence types as well as plasticity zone (PZ) structure and host preference. Genome analysis also revealed that i) sequence variation in the major outer membrane porin MOMP can result in 3D structural changes of immunogenic domains, ii) past host change of Clade 3 and 4 strains could be associated with loss of MAC/perforin in the PZ, rather than the large cytotoxin, iii) the distinct phylogeny of atypical strains (Clades 3 and 4) is also reflected in their repertoire of inclusion proteins (Inc family) and polymorphic membrane proteins (Pmps). CONCLUSIONS: Our study identified a number of genomic features that can be correlated with the phylogeny and host preference of C. psittaci strains. Our data show that intra-species genomic divergence is associated with past host change and includes deletions in the plasticity zone, structural variations in immunogenic domains and distinct repertoires of virulence factors.


Asunto(s)
Chlamydia , Chlamydophila psittaci , Psitacosis , Animales , Humanos , Caballos , Porcinos , Chlamydophila psittaci/genética , Psitacosis/veterinaria , Filogenia , Chlamydia/genética , Aves , Genómica
12.
Front Physiol ; 14: 1108966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123277

RESUMEN

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by recurrent episodes of upper airway obstruction and subsequent hypoxia. In patients with OSA, severity and number of these hypoxic events positively correlate with the extent of associated cardiovascular pathology. The molecular mechanisms underlying intermittent hypoxia (IH)-driven cardiovascular disease in OSA, however, remain poorly understood-partly due to the lack of adequate experimental models. Here, we present a novel experimental approach that utilizes primary human endothelial cells cultivated under shear stress. Oxygen partial pressure dynamics were adopted in our in vitro model according to the desaturation-reoxygenation patterns identified in polysomnographic data of severe OSA patients (n = 10, with 892 severe desaturations, SpO2<80%). Using western blot analysis, we detected a robust activation of the two major inflammatory pathways ERK and NF-κB in endothelial cells, whereas no HIF1α and HIF2α protein stabilization was observed. In line with these findings, mRNA and protein expression of the pro-inflammatory adhesion and signaling molecule ICAM-1 and the chemokine CCL2 were significantly increased. Hence, we established a novel in vitro model for deciphering OSA-elicited effects on the vascular endothelium. First data obtained in this model point to the endothelial activation of pro-inflammatory rather than hypoxia-associated pathways in OSA. Future studies in this model might contribute to the development of targeted strategies against OSA-induced, secondary cardiovascular disease.

13.
Biotechnol Biofuels Bioprod ; 16(1): 42, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899390

RESUMEN

BACKGROUND: Lipid formation from glycerol was previously found to be activated in Rhodotorula toruloides when the yeast was cultivated in a mixture of crude glycerol (CG) and hemicellulose hydrolysate (CGHH) compared to CG as the only carbon source. RNA samples from R. toruloides CBS14 cell cultures grown on either CG or CGHH were collected at different timepoints of cultivation, and a differential gene expression analysis was performed between cells grown at a similar physiological situation. RESULTS: We observed enhanced transcription of genes involved in oxidative phosphorylation and enzymes localized in mitochondria in CGHH compared to CG. Genes involved in protein turnover, including those encoding ribosomal proteins, translation elongation factors, and genes involved in building the proteasome also showed an enhanced transcription in CGHH compared to CG. At 10 h cultivation, another group of activated genes in CGHH was involved in ß-oxidation, handling oxidative stress and degradation of xylose and aromatic compounds. Potential bypasses of the standard GUT1 and GUT2-glycerol assimilation pathway were also expressed and upregulated in CGHH 10 h. When the additional carbon sources from HH were completely consumed, at CGHH 36 h, their transcription decreased and NAD+-dependent glycerol-3-phosphate dehydrogenase was upregulated compared to CG 60 h, generating NADH instead of NADPH with glycerol catabolism. TPI1 was upregulated in CGHH compared to cells grown on CG in all physiological situations, potentially channeling the DHAP formed through glycerol catabolism into glycolysis. The highest number of upregulated genes encoding glycolytic enzymes was found after 36 h in CGHH, when all additional carbon sources were already consumed. CONCLUSIONS: We suspect that the physiological reason for the accelerated glycerol assimilation and faster lipid production, was primarily the activation of enzymes that provide energy.

14.
BMC Genomics ; 24(1): 151, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973643

RESUMEN

BACKGROUND: Most plant-pathogenic Xanthomonas bacteria harbor transcription activator-like effector (TALE) genes, which function as transcriptional activators of host plant genes and support infection. The entire repertoire of up to 29 TALE genes of a Xanthomonas strain is also referred to as TALome. The DNA-binding domain of TALEs is comprised of highly conserved repeats and TALE genes often occur in gene clusters, which precludes the assembly of TALE-carrying Xanthomonas genomes based on standard sequencing approaches. RESULTS: Here, we report the successful assembly of the 5 Mbp genomes of five Xanthomonas strains from Oxford Nanopore Technologies (ONT) sequencing data. For one of these strains, Xanthomonas oryzae pv. oryzae (Xoo) PXO35, we illustrate why Illumina short reads and longer PacBio reads are insufficient to fully resolve the genome. While ONT reads are perfectly suited to yield highly contiguous genomes, they suffer from a specific error profile within homopolymers. To still yield complete and correct TALomes from ONT assemblies, we present a computational correction pipeline specifically tailored to TALE genes, which yields at least comparable accuracy as Illumina-based polishing. We further systematically assess the ONT-based pipeline for its multiplexing capacity and find that, combined with computational correction, the complete TALome of Xoo PXO35 could have been reconstructed from less than 20,000 ONT reads. CONCLUSIONS: Our results indicate that multiplexed ONT sequencing combined with a computational correction of TALE genes constitutes a highly capable tool for characterizing the TALomes of huge collections of Xanthomonas strains in the future.


Asunto(s)
Secuenciación de Nanoporos , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Xanthomonas/genética , Genoma
15.
GigaByte ; 2023: gigabyte75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949817

RESUMEN

Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-around times to get and process the data, limiting their usefulness to the practitioner. Here we used real-time, on-device target enrichment ("adaptive") sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes. We compared its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica harbouring three carbapenemases (NDM, KPC, VIM). Based on this experimental data, we then modelled the influence of several variables on the enrichment results and predicted the large effect of nucleotide identity (higher is better) and read length (shorter is better). Lastly, we showed how all relevant resistance genes are detected using adaptive sequencing on a miniature ("Flongle") flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.

16.
Eur Arch Otorhinolaryngol ; 280(5): 2373-2385, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36441246

RESUMEN

PURPOSE: The aim of the present study was to assess the efficacy of the Ronch®AP palatal device in treating patients with moderate and severe forms of obstructive sleep apnea syndrome. METHODS: In a randomized controlled trial 22 patients were examined with the Ronch®AP palatal device after 4 weeks of usage. Their results were compared to a control group of 30 patients who did not receive any treatment during this time. All patients included did not tolerate CPAP therapy. Among other parameters the apnea-hypopnea index (AHI) was measured using nocturnal cardiorespiratory polysomnography. Daytime sleepiness was assessed using Epworth Sleepiness Scale. Pittsburgh Sleep Quality Index was used to analyze sleep quality. RESULTS: Using the Ronch®AP palatal device AHI was reduced from an average of 35.34 ± 14.9/h to 19.18 ± 14.93/h, whereas the control group only showed a minimal mean reduction from 31.32 ± 12.76/h to 29.37 ± 17.11/h. The difference in reduction between the two randomized groups was highly significant (d = - 14.2, 95% CI 5.9-22.6, t = 3.4, df = 49.9, p = 0.001). Epworth Sleepiness Scale score was lowered from 9.18 ± 4.73 to 7.82 ± 4.14 on average and sleep quality improved by - 1.91 ± 2.31. Both changes were also statistically relevant (p < 0.005). CONCLUSIONS: The Ronch®AP device is an effective alternative treatment option for patients suffering from moderate and severe forms of obstructive sleep apnea syndrome and not tolerating CPAP therapy. TRIAL REGISTRATION NUMBER: 407-16 with approval from the local ethical committee (Ethikkommission der Medizinischen Fakultät der LMU München).


Asunto(s)
Apnea Obstructiva del Sueño , Somnolencia , Humanos , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/terapia , Polisomnografía , Resultado del Tratamiento , Hueso Paladar , Presión de las Vías Aéreas Positiva Contínua
17.
F1000Res ; 12: 1091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38716230

RESUMEN

Background: Accurate genome sequences form the basis for genomic surveillance programs, the added value of which was impressively demonstrated during the COVID-19 pandemic by tracing transmission chains, discovering new viral lineages and mutations, and assessing them for infectiousness and resistance to available treatments. Amplicon strategies employing Illumina sequencing have become widely established for variant detection and reference-based reconstruction of SARS-CoV-2 genomes, and are routine bioinformatics tasks. Yet, specific challenges arise when analyzing amplicon data, for example, when crucial and even lineage-determining mutations occur near primer sites. Methods: We present CoVpipe2, a bioinformatics workflow developed at the Public Health Institute of Germany to reconstruct SARS-CoV-2 genomes based on short-read sequencing data accurately. The decisive factor here is the reliable, accurate, and rapid reconstruction of genomes, considering the specifics of the used sequencing protocol. Besides fundamental tasks like quality control, mapping, variant calling, and consensus generation, we also implemented additional features to ease the detection of mixed samples and recombinants. Results: We highlight common pitfalls in primer clipping, detecting heterozygote variants, and dealing with low-coverage regions and deletions. We introduce CoVpipe2 to address the above challenges and have compared and successfully validated the pipeline against selected publicly available benchmark datasets. CoVpipe2 features high usability, reproducibility, and a modular design that specifically addresses the characteristics of short-read amplicon protocols but can also be used for whole-genome short-read sequencing data. Conclusions: CoVpipe2 has seen multiple improvement cycles and is continuously maintained alongside frequently updated primer schemes and new developments in the scientific community. Our pipeline is easy to set up and use and can serve as a blueprint for other pathogens in the future due to its flexibility and modularity, providing a long-term perspective for continuous support. CoVpipe2 is written in Nextflow and is freely accessible from \href{https://github.com/rki-mf1/CoVpipe2}{github.com/rki-mf1/CoVpipe2} under the GPL3 license.

18.
Gigascience ; 112022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36399058

RESUMEN

Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage" (WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Flujo de Trabajo
19.
Int J Nanomedicine ; 17: 5081-5097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340183

RESUMEN

Purpose: The conventional techniques for the preparation of reconstituted high-density lipoprotein (rHDL) are hampered by long process times, the need for large amounts of starting material, and harsh preparation conditions. Here, we present a novel rHDL preparation method to overcome these challenges. Furthermore, we propose a dual mode of action for rHDL loaded with the immunosuppressant drug everolimus (Eve-rHDL) in the context of atherosclerosis and cardiovascular disease. Methods: We use dual centrifugation for rHDL nanoparticle preparation and characterize the physicochemical properties by NS-TEM, N-PAGE, DLS, AF4, and HPLC. In addition, we determine the biological efficacy in human and murine cell culture with regard to cellular uptake, cholesterol efflux, and proliferation. Results: We confirm the characteristic particle size of 10 nm, discoidal morphology, and chemical composition of the rHDL preparations and identify dual centrifugation as an ideal method for cost-effective aseptic rHDL manufacturing. rHDL can be prepared in approx. 1.5 h with batch sizes as little as 89 µL. Moreover, we demonstrate the cholesterol efflux capacity and anti-proliferative activity of Eve-rHDL in vitro. The anti-proliferative effects were comparable to free Eve, thus confirming the suitability of rHDL as a capable drug delivery vehicle. Conclusion: Eve-rHDL shows great efficacy in vitro and may further be employed to target atherosclerotic plaques in vivo. Highly effective anti-atherosclerotic therapy might be feasible by reducing both inflammatory- and lipid burden of the plaques. Dual centrifugation is an ideal technique for the efficient application of the rHDL platform in cardiovascular disease and beyond.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Ratones , Humanos , Animales , Lipoproteínas HDL/química , Everolimus/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Colesterol , Centrifugación
20.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362301

RESUMEN

The progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is a major challenge in urologic oncology. However, understanding of the molecular processes remains limited. The dysregulation of IQGAP2 is becoming increasingly evident in most tumor entities, and it plays a role in multiple oncogenic pathways, so we evaluated the role of IQGAP2 in bladder cancer. IQGAP2 was downregulated in tumors compared with normal urothelium tissues and cells. IQGAP2 effectively attenuated bladder cancer cell growth independently from apoptosis. Reduced IQGAP2 promoted EMT in bladder cancer cells via activation of the MAPK/ERK pathway. In addition, IQGAP2 might influence key cellular processes, such as proliferation and metastasis, through the regulation of cytokines. In conclusion, we suggest that IQGAP2 plays a tumor-suppressing role in bladder cancer, possibly via inhibiting the MAPK/ERK pathway and reducing cytokines.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Urotelio/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...