Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells Dev ; 178: 203909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428638

RESUMEN

The discovery of the amphibian gastrula organizer and its publication by Hans Spemann and Hilde Mangold in 1924 is a foundation of experimental embryology, and has shaped our understanding of embryonic induction and pattern formation in vertebrates until today. The original publication is a piece of scientific art, characterized by the meticulous hand drawings by Hilde Mangold, as well as the text that develops mechanistic concepts of modern embryology. While historic microphotographs of specimens got lost, the original microscope slides and Hilde Mangold's laboratory notebook have been secured in embryological collections until today. Here, we make the original data of the six embryonic specimens reported in 1924, as well as the laboratory notebook, available in an accessible digital format. Together, these data shed light on the scientific process that led to the discovery, and should help to make the experiments on the most important signalling center in early vertebrate development transparent for generations of embryologists to come.


Asunto(s)
Gástrula , Animales , Microscopía/métodos , Organizadores Embrionarios , Historia del Siglo XX , Embriología/historia , Embriología/métodos
2.
PLoS One ; 10(7): e0134299, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225764

RESUMEN

DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the ß-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.


Asunto(s)
Apoptosis/genética , Ciclo Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Genes p53 , Transcripción Genética , Pez Cebra/embriología , Animales , Activación Transcripcional
3.
Dev Biol ; 318(1): 52-64, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18436202

RESUMEN

The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endodermo/metabolismo , Sistema Nervioso Entérico/embriología , Proteínas Hedgehog/metabolismo , Mesodermo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Movimiento Celular/fisiología , Endodermo/citología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Hedgehog/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas de la Membrana , Mesodermo/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Patched , Receptor Patched-1 , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOX , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alcaloides de Veratrum/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
4.
BMC Dev Biol ; 7: 135, 2007 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18053265

RESUMEN

BACKGROUND: Dopaminergic neurons form in diverse areas of the vertebrate di- and mesencephalon to constitute several major neuromodulatory systems. While much is known about mammalian mesencephalic dopaminergic neuron development, little is known about the specification of the diencephalic dopaminergic groups. The transcription factors Pitx3 and Lmx1b play an important role in mammalian mesencephalic dopaminergic specification, and Nurr1/Nr4a2 has been shown to contribute to specification of the dopaminergic neurotransmitter phenotype. We use zebrafish to analyze potentially evolutionarily conserved roles of these transcription factors in a vertebrate brain that lacks a mesencephalic dopaminergic system, but has an ascending dopaminergic system in the ventral diencephalon. RESULTS: We use a combination of fluorescent in situ hybridization and immunohistochemistry to determine whether nr4a2, lmx1b, and pitx3 genes are expressed in mature dopaminergic neurons or in potential precursor populations. We identify a second nr4a2 paralogue, nr4a2a, and find it co-expressed with Tyrosine hydroxylase in preoptic, pretectal and retinal amacrine dopaminergic neurons, while nr4a2b is only expressed in preoptic and retinal dopaminergic neurons. Both zebrafish nr4a2 paralogues are not expressed in ventral diencephalic dopaminergic neurons with ascending projections. Combined morpholino antisense oligo mediated knock-down of both nr4a2a and nr4a2b transcripts reveals that all zebrafish dopaminergic neurons expressing nr4a2a depend on Nr4a2 activity for tyrosine hydroxylase and dopamine transporter expression. Zebrafish lmx1b.1 is expressed in noradrenergic neurons of the locus coeruleus and medulla oblongata, but knock-down reveals that it is specifically required for tyrosine hydroxylase expression only in the medulla oblongata area postrema noradrenergic neurons. Both lmx1b genes and pitx3 are not expressed in dopaminergic neurons, but in a diencephalic territory that might contain precursor cells for ventral diencephalic dopaminergic neurons. Upon morpholino knock-down of both lmx1b paralogues, the number of neurons in diencephalic dopaminergic clusters with ascending projections appears specifically reduced. Thus lmx1b paralogues may contribute to the generation of diencephalic dopaminergic precursors. Conversely, knock-down of pitx3 does not specifically affect any diencephalic DA cluster. CONCLUSION: Our data indicate a conserved evolutionary role of Nr4a2 proteins in specification of the neurotransmitter phenotype, albeit it appears to be only one of several regulatory modules of dopaminergic differentiation, as most ventral diencephalic dopaminergic neurons do not express nr4a2 genes in zebrafish. For zebrafish lmx1b genes, which are not expressed in mature dopaminergic neurons, our data suggest a role in diencephalic precursor populations contributing to the ascending dopaminergic systems. A di-mesencephalic longitudinal domain of lmx1b expression may be the basis for the expansion and posterior shift of ventral di-/mesencephalic dopaminergic populations with ascending projections during evolution.


Asunto(s)
Proteínas de Unión al ADN/genética , Dopamina/fisiología , Proteínas de Homeodominio/genética , Neuronas/citología , Norepinefrina/fisiología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Evolución Biológica , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Hibridación Fluorescente in Situ , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Factores de Transcripción/fisiología , Pez Cebra , Proteínas de Pez Cebra/fisiología
5.
Curr Biol ; 17(10): 873-80, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17481897

RESUMEN

Neurons that produce dopamine as a neurotransmitter constitute a heterogeneous group involved in the control of various behaviors and physiology. In mammals, dopaminergic neurons are found in distinct clusters mainly located in the ventral midbrain and the caudal forebrain [1]. Although much is known about midbrain dopaminergic neurons, development of diencephalic dopaminergic neurons is poorly understood. Here we demonstrate that Orthopedia (Otp) homeodomain protein is essential for the development of specific subsets of diencephalic dopaminergic neurons. Zebrafish embryos lacking Otp activity are devoid of dopaminergic neurons in the hypothalamus and the posterior tuberculum. Similarly, Otp-/- mouse [2, 3] embryos lack diencephalic dopaminergic neurons of the A11 group, which constitutes the diencephalospinal dopaminergic system. In both systems, Otp is expressed in the affected dopaminergic neurons as well as in potential precursor populations, and it might contribute to dopaminergic cell specification and differentiation. In fish, overexpression of Otp can induce ectopic tyrosine hydroxylase and dopamine transporter expression, indicating that Otp can specify aspects of dopaminergic identity. Thus, Otp is one of the few known transcription factors that can determine aspects of the dopaminergic phenotype and the first known factor to control the development of the diencephalospinal dopaminergic system.


Asunto(s)
Diencéfalo/embriología , Proteínas de Homeodominio/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular , Diencéfalo/citología , Dopamina/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
J Biol Chem ; 282(2): 1144-51, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17098734

RESUMEN

For vertebrate development, vitamin A (all-trans retinol) is required in quantitative different amounts and spatiotemporal distribution for the production of retinoic acid, a nuclear hormone receptor ligand, and 11-cis retinal, the chromophore of visual pigments. We show here for zebrafish that embryonic retinoid homeostasis essentially depends on the activity of a leci-thin:retinol acyltransferase (Lratb). During embryogenesis, lratb is expressed in mostly non-overlapping domains opposite to retinal dehydrogenase 2 (raldh2), the key enzyme for retinoic acid synthesis. Blocking retinyl ester formation by a targeted knock down of Lratb results in significantly increased retinoic acid levels, which lead to severe embryonic patterning defects. Thus, we provide evidence that a balanced competition between Lratb and Raldh2 for yolk vitamin A defines embryonic compartments either for retinyl ester or retinoic acid synthesis. This homeostatic mechanism dynamically adjusts embryonic retinoic acid levels for gene regulation, concomitantly sequestering excess yolk vitamin A in the form of retinyl esters for the establishment of larval vision later during development.


Asunto(s)
Ojo/embriología , Ojo/metabolismo , Retinoides/metabolismo , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Drosophila , Yema de Huevo/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ésteres/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis/fisiología , Datos de Secuencia Molecular , Retinaldehído/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo
7.
Anat Embryol (Berl) ; 211 Suppl 1: 73-86, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17024299

RESUMEN

The zebrafish mutation m865 was isolated during a large-scale mutagenesis screen aimed at identifying genes involved in the development and maintenance of subgroups of neurons in the zebrafish central nervous system. The phenotype of m865 mutant embryos shows defects in the development of dopaminergic neurons in the pretectum and of retinal amacrine cells, as well as abnormal caudal dopaminergic cluster in the diencephalon. The effects of the mutation appear not to be restricted to dopaminergic neurons, as development of other neurotransmitter systems (serotonergic and cholinergic) is impaired as well. Furthermore, increased apoptosis is localized to the m865 mutant retina and in the optic tectum starting at 24hpf, and may lead to the observed reduced size of the mutant head and eye. Early patterning is not affected in m865 mutant embryos, and expression of genes known to play a role in dopaminergic cell differentiation is normal except for reduced expression of nurr1 in the mutant retina. Thus the m865 mutation does not specifically affect dopaminergic neuron development. m865 was genetically mapped to linkage group 5, and the critical genomic interval could be narrowed down to a region of 110 kb, containing four candidate genes. For one of these candidate genes, sepiapterin reductase (spr), a requirement for neuronal survival has previously been implicated, including dopaminergic neurons. Identification of the mutated gene should lead to a more detailed understanding of the defects observed in m865 mutant embryos, and potentially could enhance the understanding of the development and maintenance of specific dopaminergic neuronal populations.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Encéfalo/embriología , Mutación/genética , Neuronas/fisiología , Pez Cebra/embriología , Animales , Apoptosis/fisiología , Secuencia de Bases , Diferenciación Celular/genética , Mapeo Cromosómico , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Datos de Secuencia Molecular , Mutagénesis , Neuronas/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Factores de Transcripción/metabolismo , Pez Cebra/genética
8.
Genetics ; 174(2): 693-705, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16582438

RESUMEN

The transcriptional mediator complex has emerged as an important component of transcriptional regulation, yet it is largely unknown whether its subunits have differential functions in development. We demonstrate that the zebrafish mutation m885 disrupts a subunit of the mediator complex, Crsp34/Med27. To explore the role of the mediator in the control of retinal differentiation, we employed two additional mutations disrupting the mediator subunits Trap100/Med24 and Crsp150/Med14. Our analysis shows that loss of Crsp34/Med27 decreases amacrine cell number, but increases the number of rod photoreceptor cells. In contrast, loss of Trap100/Med24 decreases rod photoreceptor cells. Loss of Crsp150/Med14, on the other hand, only slightly reduces dopaminergic amacrine cells, which are absent from both crsp34(m885) and trap100(lessen) mutant embryos. Our data provide evidence for differential requirements for Crsp34/Med27 in developmental processes. In addition, our data point to divergent functions of the mediator subunits Crsp34/Med27, Trap100/Med24, and Crsp150/Med14 and, thus, suggest that subunit composition of the mediator contributes to the control of differentiation in the vertebrate CNS.


Asunto(s)
Subunidades de Proteína/fisiología , Retina/embriología , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Alelos , Células Amacrinas/citología , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Complejo Mediador , Fenotipo , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Retina/metabolismo , Transactivadores/biosíntesis , Transactivadores/genética , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
9.
Proc Natl Acad Sci U S A ; 102(51): 18467-72, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16339308

RESUMEN

In multicellular organisms, the control of genome duplication and cell division must be tightly coordinated. Essential roles of the minichromosome maintenance (MCM) proteins for genome duplication have been well established. However, no genetic model has been available to address the function of MCM proteins in the context of vertebrate organogenesis. Here, we present positional cloning of a zebrafish mcm5 mutation and characterization of its retina phenotype. In the retina, mcm5 expression correlates closely with the pattern of cell proliferation. By the third day of development, mcm5 is down-regulated in differentiated cells but is maintained in regions containing retinal stem cells. We demonstrate that a gradual depletion of maternally derived MCM5 protein leads to a prolonged S phase, cell-cycle-exit failure, apoptosis, and reduction in cell number in mcm5(m850) mutant embryos. Interestingly, by the third day of development, increased apoptosis is detectable only in the retina, tectum, and hindbrain but not in other late-proliferating tissues, suggesting that different tissues may employ distinct cellular programs in responding to the depletion of MCM5.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Retina/citología , Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular , Clonación Molecular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Retina/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Development ; 132(16): 3731-42, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16077092

RESUMEN

Cranial sensory neurons largely derive from neurogenic placodes (epibranchial and dorsolateral), which are ectodermal thickenings that form the sensory ganglia associated with cranial nerves, but the molecular mechanisms of placodal development are unclear. Here, we show that the pharyngeal endoderm induces epibranchial neurogenesis in zebrafish, and that BMP signaling plays a crucial role in this process. Using a her5:egfp transgenic line to follow endodermal movements in living embryos, we show that contact between pharyngeal pouches and the surface ectoderm coincides with the onset of neurogenesis in epibranchial placodes. By genetic ablation and reintroduction of endoderm by cell transplantation, we show that these contacts promote neurogenesis. Using a genetic interference approach we further identify bmp2b and bmp5 as crucial components of the endodermal signals that induce epibranchial neurogenesis. Dorsolateral placodes (trigeminal, auditory, vestibular, lateral line) develop independently of the endoderm and BMP signaling, suggesting that these two sets of placodes are under separate genetic control. Our results show that the endoderm regulates the differentiation of cranial sensory ganglia, which coordinates the cranial nerves with the segments that they innervate.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Endodermo/fisiología , Morfogénesis , Neuronas Aferentes/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Biomarcadores , Tipificación del Cuerpo , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 5 , Proteínas Morfogenéticas Óseas/genética , Estructuras Embrionarias/anatomía & histología , Estructuras Embrionarias/fisiología , Ganglios/citología , Ganglios/metabolismo , Hibridación in Situ , Neuronas Aferentes/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
11.
Development ; 131(7): 1463-77, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14985255

RESUMEN

Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.


Asunto(s)
Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Morfogénesis/fisiología , Cresta Neural/fisiología , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Tipificación del Cuerpo , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Región Branquial/citología , Región Branquial/embriología , Linaje de la Célula , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Maxilares/anatomía & histología , Maxilares/embriología , Riñón/embriología , Riñón/metabolismo , Datos de Secuencia Molecular , Cresta Neural/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Pigmentación/fisiología , Alineación de Secuencia , Factor de Transcripción AP-2 , Factores de Transcripción/genética , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra
12.
Development ; 130(23): 5741-54, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14534139

RESUMEN

Tfap2a is a transcriptional activator expressed in many different cell types, including neurons, neural crest derivatives and epidermis. We show that mutations at the zebrafish locus previously called mont blanc (mob) or lockjaw (low) encode tfap2a. The mutant phenotype reveals that tfap2a is essential for the development of hindbrain noradrenergic (NA) neurons of the locus coeruleus, medulla and area postrema, as well as for sympathetic NA neurons, epibranchial placode derived visceral sensory ganglia, and craniofacial and trunk crest derivatives. We focus our analysis on the role of tfap2a NA differentiation in the CNS. In the locus coeruleus, Phox2a and Tfap2a are co-expressed and are both required for NA development. By contrast, in the medulla Phox2a and Tfap2a are expressed in adjacent overlapping domains, but only tfap2a activity is required for NA differentiation, as NA neurons develop normally in soulless/phox2a mutant medulla. phox2a and tfap2a do not appear to affect each others expression. Our studies show that two distinct inductive mechanisms control NA development in the zebrafish hindbrain. For the posterior hindbrain, we identify retinoic acid as an important signal to induce NA differentiation in the medulla oblongata and area postrema, where it expands the tfap2a expression domain and thus acts upstream of tfap2a. By contrast, previous work revealed Fgf8 to be involved in specification of NA neurons in the locus coeruleus. Thus, although the inductive signals may be distinct, hindbrain NA neurons of the locus coeruleus and the posterior groups both require Tfap2a to establish their noradrenergic identity.


Asunto(s)
Agonistas alfa-Adrenérgicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Inducción Embrionaria , Neuronas/fisiología , Norepinefrina/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular/fisiología , Clonación Molecular , Proteínas de Unión al ADN/genética , Femenino , Ganglios Simpáticos/anomalías , Ganglios Simpáticos/citología , Ganglios Simpáticos/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/química , Neuronas/citología , Fenotipo , Rombencéfalo/citología , Serotonina/metabolismo , Transducción de Señal/fisiología , Distribución Tisular , Factor de Transcripción AP-2 , Factores de Transcripción/genética , Pez Cebra/anomalías , Pez Cebra/anatomía & histología , Pez Cebra/genética , Proteínas de Pez Cebra
13.
J Neurosci ; 23(13): 5507-19, 2003 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12843251

RESUMEN

CNS catecholaminergic neurons can be distinguished by their neurotransmitters as dopaminergic or noradrenergic and form in distinct regions at characteristic embryonic stages. This raises the question of whether all catecholaminergic neurons of one transmitter type are specified by the same set of factors. Therefore, we performed genetic analyses to define signaling requirements for the specification of distinct clusters of catecholaminergic neurons in zebrafish. In mutants affecting midbrain- hindbrain boundary (MHB) organizer formation, the earliest ventral diencephalic dopaminergic neurons appear normal. However, after 2 d of development, we observed fewer cells than in wild types, which suggests that the MHB provides proliferation or survival factors rather than specifying ventral diencephalic dopaminergic clusters. In hedgehog (Hh) pathway mutants, the formation of catecholaminergic neurons is affected only in the pretectal cluster. Surprisingly, neither fibroblast growth factor 8 (FGF8) alone nor in combination with Hh signaling is required for specification of early developing dopaminergic neurons. We analyzed the formation of prosomeric territories in the forebrain of Hh and Nodal pathway mutants to determine whether the absence of specific dopaminergic clusters may be caused by early patterning defects ablating corresponding parts of the CNS. In Nodal pathway mutants, ventral diencephalic and pretectal catecholaminergic neurons fail to develop, whereas both anatomical structures form at least in part. This suggests that Nodal signaling is required for catecholaminergic neuron specification. In summary, our results do not support the previously suggested dominant roles for sonic hedgehog and Fgf8 in specification of the first catecholaminergic neurons, but instead indicate a novel role for Nodal signaling in this process.


Asunto(s)
Encéfalo/metabolismo , Catecolaminas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Transactivadores/metabolismo , Pez Cebra/fisiología , Animales , Tipificación del Cuerpo/fisiología , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular/fisiología , Diencéfalo/citología , Diencéfalo/embriología , Diencéfalo/metabolismo , Dopamina/metabolismo , Embrión no Mamífero , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog , Hibridación in Situ , Mutación , Neuronas/metabolismo , Transducción de Señal/fisiología , Transactivadores/genética , Pez Cebra/embriología
14.
Development ; 130(10): 2173-86, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12668631

RESUMEN

The egg yolk of vertebrates contains carotenoids, which account for its characteristic yellow color in some species. Such plant-derived compounds, e.g. beta-carotene, serve as the natural precursors (provitamins) of vitamin A, which is indispensable for chordate development. As egg yolk also contains stored vitamin A, carotenoids have so far been solely discussed as pigments for the coloration of the offspring. Based on our recent molecular identification of the enzyme catalyzing provitamin A conversion to vitamin A, we address a possible role of provitamin A during zebrafish (Danio rerio) development. We cloned the zebrafish gene encoding the vitamin A-forming enzyme, a beta,beta-carotene-15,15'-oxygenase. Analysis of its mRNA expression revealed that it is under complex spatial and temporal control during development. Targeted gene knockdown using the morpholino antisense oligonucleotide technique indicated a vital role of the provitamin A-converting enzyme. Morpholino-injected embryos developed a morphological phenotype that included severe malformation of the eyes, the craniofacial skeleton and pectoral fins, as well as reduced pigmentation. Analyses of gene expression changes in the morphants revealed that distinct retinoic acid-dependent developmental processes are impaired, such as patterning of the hindbrain and differentiation of hindbrain neurons, differentiation of neural crest derivatives (including the craniofacial skeleton), and the establishment of the ventral retina. Our data provide strong evidence that, for several developmental processes, retinoic acid generation depends on local de novo formation of retinal from provitamin A via the carotene oxygenase, revealing an unexpected, essential role for carotenoids in embryonic development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Oxigenasas/metabolismo , Retinaldehído/metabolismo , Vitamina A/metabolismo , Pez Cebra/embriología , Monoterpenos Acíclicos , Secuencia de Aminoácidos , Animales , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Monoterpenos/metabolismo , Morfogénesis/fisiología , Cresta Neural/embriología , Oligonucleótidos Antisentido/metabolismo , Óvulo/química , Oxigenasas/genética , Faringe/anatomía & histología , Faringe/embriología , Fenotipo , Retina/embriología , Rombencéfalo/crecimiento & desarrollo , Alineación de Secuencia , Tretinoina/metabolismo , Vitamina A/química , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , beta-Caroteno 15,15'-Monooxigenasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA