Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104922, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37321449

RESUMEN

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast-derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.


Asunto(s)
Senescencia Celular , Células Epiteliales , Fibroblastos , Piroptosis , Caspasas/metabolismo , Células Epiteliales/citología , Fibroblastos/metabolismo , Glándulas Mamarias Humanas/citología , Humanos , Medios de Cultivo Condicionados , Células Cultivadas
2.
Methods Mol Biol ; 2675: 309-315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258773

RESUMEN

Changes in metabolism can alter a variety of distinct cellular parameters in a number of physiological and pathological contexts. Relatedly, the loss of integrin-mediated attachment to extracellular matrix (ECM) is now appreciated to alter metabolism in a variety of distinct fashions. As such, assays to quantify and assess metabolism during ECM detachment are critical to better understanding the cellular and molecular changes that impact the behavior and survival of ECM-detached cells. Here, we discuss assays and approaches commonly used to study metabolism during ECM detachment.


Asunto(s)
Integrinas , Redes y Vías Metabólicas , Integrinas/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo
3.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865231

RESUMEN

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media (CM) from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D (GSDMD)-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...