Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1352717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605986

RESUMEN

This study developed a new burn wound dressing based on core-shell nanofibers that co-deliver antibiotic and antioxidant drugs. For this purpose, poly(ethylene oxide) (PEO)-chitosan (CS)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell nanofibers were fabricated through co-axial electrospinning technique. Antibiotic levofloxacin (LEV) and antioxidant quercetin (QS) were incorporated into the core and shell parts of PEO-CS/PLGA nanofibers, respectively. The drugs could bond to the polymer chains through hydrogen bonding, leading to their steady release for 168 h. An in vitro drug release study showed a burst effect followed by sustained release of LEV and QS from the nanofibers due to the Fickian diffusion. The NIH 3T3 fibroblast cell viability of the drug loaded core-shell nanofibers was comparable to that in the control (tissue culture polystyrene) implying biocompatibility of the nanofibers and their cell supportive role. However, there was no significant difference in cell viability between the drug loaded and drug free core-shell nanofibers. According to in vivo experiments, PEO-CS-LEV/PLGA-QS core-shell nanofibers could accelerate the healing process of a burn wound compared to a sterile gauze. Thanks to the synergistic therapeutic effect of LEV and QS, a significantly higher wound closure rate was recorded for the drug loaded core-shell nanofibrous dressing than the drug free nanofibers and control. Conclusively, PEO-CS-LEV/PLGA-QS core-shell nanofibers were shown to be a promising wound healing material that could drive the healing cascade through local co-delivery of LEV and QS to burn wounds.

2.
Int J Biol Macromol ; 258(Pt 2): 129155, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171440

RESUMEN

Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.


Asunto(s)
Cucarachas , Osteogénesis , Animales , Humanos , Andamios del Tejido/química , Quercetina/farmacología , Quitina/farmacología , Staphylococcus aureus , Ingeniería de Tejidos/métodos , Regeneración Ósea , Diferenciación Celular
3.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37721636

RESUMEN

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Asunto(s)
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carnosina/farmacología , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliales , Cicatrización de Heridas , Nanopartículas/química , Antibacterianos/química
5.
Polymers (Basel) ; 15(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299231

RESUMEN

In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37155412

RESUMEN

In this study, a wound dressing composed of an alginate dialdehyde-gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles stiffened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more effective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing.

7.
J Control Release ; 358: 476-497, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164241

RESUMEN

Antiviral peptides and antiviral polysaccharides can play a major role in the prevention and treatment of emerging viral health problems. These antiviral compounds are biocompatible, environmentally friendly, non-toxic, and cost-effective, yet are poorly water soluble and vulnerable to enzymatic (protease) degradation within the aggressive intercellular microenvironment. Therefore, they should be properly protected and delivered to viruses and host cells by the well-designed nanocarriers that mimic viruses in terms of size, morphology, and smart function. This literature review is meant to introduce the latest advances (mainly within the past five years) in antiviral nano-assemblies comprising antiviral peptides or antiviral polysaccharides. To the best of our knowledge, there is no similar study in the literature that has solely and sufficiently investigated such antiviral nanomaterials partially or totally derived from nature. The rational classification of microorganism-, plant-, and animal-derived antiviral polysaccharide and antiviral peptide delivering nanomaterials and exploration of their relevant applications will clarify the promising capacity of these state-of-the-art materials for a number of technologies developed to inactivate viruses.


Asunto(s)
COVID-19 , Nanoestructuras , Virosis , Virus , Animales , Antivirales/química , SARS-CoV-2 , Virosis/tratamiento farmacológico , Péptidos/metabolismo , Polisacáridos
8.
Int J Biol Macromol ; 242(Pt 2): 124857, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37187421

RESUMEN

Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.


Asunto(s)
Osteogénesis , Phoeniceae , Humanos , Andamios del Tejido/química , Antioxidantes/farmacología , Regeneración Ósea , Ingeniería de Tejidos , Diferenciación Celular , Celulosa/farmacología , Proliferación Celular
9.
Front Bioeng Biotechnol ; 11: 1189726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251569

RESUMEN

Liver cancer is now one of the main causes leading to death worldwide. To achieve reliable therapeutic effects, it is crucial to develop efficient approaches to test novel anticancer drugs. Considering the significant contribution of tumor microenvironment to cell's response to medications, in vitro 3D bioinspiration of cancer cell niches can be regarded as an advanced strategy to improve the accuracy and reliability of the drug-based treatment. In this regard, decellularized plant tissues can perform as suitable 3D scaffolds for mammalian cell culture to create a near-to-real condition to test drug efficacy. Here, we developed a novel 3D natural scaffold made from decellularized tomato hairy leaves (hereafter called as DTL) to mimic the microenvironment of human hepatocellular carcinoma (HCC) for pharmaceutical purposes. The surface hydrophilicity, mechanical properties, and topography measurement and molecular analyses revealed that the 3D DTL scaffold is an ideal candidate for liver cancer modeling. The cells exhibited a higher growth and proliferation rate within the DTL scaffold, as verified by quantifying the expression of related genes, DAPI staining, and SEM imaging of the cells. Moreover, prilocaine, an anticancer drug, showed a higher effectiveness against the cancer cells cultured on the 3D DTL scaffold, compared to a 2D platform. Taken together, this new cellulosic 3D scaffold can be confidently proposed for chemotherapeutic testing of drugs on hepatocellular carcinoma.

10.
Burns Trauma ; 10: tkac038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196303

RESUMEN

Since the discovery of silicate bioactive glass (BG) by Larry Hench in 1969, different classes of BGs have been researched over decades mainly for bone regeneration. More recently, validating the beneficial influence of BGs with tailored compositions on angiogenesis, immunogenicity and bacterial infection, the applicability of BGs has been extended to soft tissue repair and wound healing. Particularly, fibrous wound dressings comprising BG particle reinforced polymer nanofibers and cotton-candy-like BG fibers have been proven to be successful for wound healing applications. Such fibrous dressing materials imitate the physical structure of skin's extracellular matrix and release biologically active ions e.g. regenerative, pro-angiogenic and antibacterial ions, e.g. borate, copper, zinc, etc., that can provoke cellular activities to regenerate the lost skin tissue and to induce new vessels formation, while keeping an anti-infection environment. In the current review, we discuss different BG fibrous materials meant for wound healing applications and cover the relevant literature in the past decade. The production methods for BG-containing fibers are explained and as fibrous wound dressing materials, their wound healing and bactericidal mechanisms, depending on the ions they release, are discussed. The present gaps in this research area are highlighted and new strategies to address them are suggested.

11.
Nanomaterials (Basel) ; 12(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014663

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) decorated with Ag nanoparticles (NPs) are bifunctional adsorbent nanomaterials with antibacterial activity. They can be magnetically recovered from wastewater in case of coupling with γ-Fe2O3. In this study, for the first time, an environmentally friendly technique was applied to prepare a nanocomposite (NC) material composed of γ-Fe2O3/MWCNT/Ag by using Bridgestone disposable tires and Viscum album leaves extract. γ-Fe2O3/MWCNTs/Ag NC was employed for the removal of sulfamethazine (SMT) from aqueous solutions. Under the optimized conditions determined via the Taguchi method, the highest SMT adsorption capacity of the γ-Fe2O3/MWCNT/Ag NC was measured to be 47.6 mg/g. The experimental data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The thermodynamic parameters implied that the adsorption process was endothermic. In addition to adsorption of the drug pollutant, the NC demonstrated a superior antibacterial activity against Gram-positive bacteria. The reusability test also showed that over 79% SMT can be removed using γ-Fe2O3/MWCNTs/Ag NC even after four adsorption cycles. Taken together, γ-Fe2O3/MWCNTs/Ag NC was proven to be a promising antibacterial nano-adsorbent for wastewater treatment.

12.
Macromol Biosci ; 22(9): e2200113, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35795888

RESUMEN

A novel biomaterial comprising alginate dialdehyde-gelatine (ADA-GEL) hydrogel augmented by lysozyme loaded mesoporous cerium doped silica-calcia nanoparticles (Lys-Ce-MSNs) is 3D printed to create bioactive scaffolds. Lys-Ce-MSNs raise the mechanical stiffness of the hydrogel composite scaffold and induce surface apatite mineralization, when the scaffold is immersed in simulated body fluid (SBF). Moreover, the scaffolds can co-deliver bone healing (Ca and Si) and antioxidant ions (Ce), and Lys to achieve antibacterial (and potentially anticancer) properties. The nanocomposite hydrogel scaffolds can hold and deliver Lys steadily. Based on the in vitro results, the hydrogel nanocomposite containing Lys assured improved pre-osteoblast cell (MC3T3-E1) proliferation, adhesion, and differentiation, thanks to the biocompatibility of ADA-GEL, bioactivity of Ce-MSNs, and the stabilizing effect of Lys on the scaffold structure. On the other hand, the proliferation level of MG63 osteosarcoma cells decreased, likely due to the effect of Lys. Last but not least, cooperatively, alongside gentamicin (GEN), Lys brought about a proper antibacterial efficiency to the hydrogel nanocomposite scaffold against gram-positive and gram-negative bacteria. Taken together, ADA-GEL/Lys-Ce-MSN nanocomposite holds great promise for 3D printing of multifunctional hydrogel bone tissue engineering (BTE) scaffolds, able to induce bone regeneration, address infection, and potentially inhibit tumor formation and growth.


Asunto(s)
Cerio , Nanopartículas , Alginatos/química , Alginatos/farmacología , Antibacterianos/farmacología , Compuestos de Calcio , Cerio/farmacología , Gelatina/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Hidrogeles/farmacología , Muramidasa/farmacología , Nanopartículas/química , Osteogénesis , Óxidos , Impresión Tridimensional , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
J Funct Biomater ; 13(2)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35735923

RESUMEN

Despite the advent of promising technologies in tissue engineering, finding a biomimetic 3D bio-construct capable of enhancing cell attachment, maintenance, and function is still a challenge in producing tailorable scaffolds for bone regeneration. Here, osteostimulatory effects of the butterfly wings as a naturally porous and non-toxic chitinous scaffold on mesenchymal stromal cells are assessed. The topographical characterization of the butterfly wings implied their ability to mimic bone tissue microenvironment, whereas their regenerative potential was validated after a 14-day cell culture. In vivo analysis showed that the scaffold induced no major inflammatory response in Wistar rats. Topographical features of the bioconstruct upregulated the osteogenic genes, including COL1A1, ALP, BGLAP, SPP1, SP7, and AML3 in differentiated cells compared to the cells cultured in the culture plate. However, butterfly wings were shown to provide a biomimetic microstructure and proper bone regenerative capacity through a unique combination of various structural and material properties. Therefore, this novel platform can be confidently recommended for bone tissue engineering applications.

14.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458282

RESUMEN

In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.

15.
Mater Sci Eng C Mater Biol Appl ; 131: 112470, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857258

RESUMEN

3D printing enables a better control over the microstructure of bone restoring constructs, addresses the challenges seen in the preparation of patient-specific bone scaffolds, and overcomes the bottlenecks that can appear in delivering drugs/growth factors promoting bone regeneration. Here, 3D printing is employed for the fabrication of an osteogenic construct made of hydrogel nanocomposites. Alginate dialdehyde-gelatin (ADA-GEL) hydrogel is reinforced by the incorporation of bioactive glass nanoparticles, i.e. mesoporous silica-calcia nanoparticles (MSNs), in two types of drug (icariin) loading. The composites hydrogel is printed as superhydrated composite constructs in a grid structure. The MSNs not only improve the mechanical stiffness of the constructs but also induce formation of an apatite layer when the construct is immersed in simulated body fluid (SBF), thereby promoting cell adhesion and proliferation. The nanocomposite constructs can hold and deliver icariin efficiently, regardless of its incorporation mode, either as loaded into the MSNs or freely distributed within the hydrogel. Biocompatibility tests showed that the hydrogel nanocomposites assure enhanced osteoblast proliferation, adhesion, and differentiation. Such optimum biological properties stem from the superior biocompatibility of ADA-GEL, the bioactivity of the MSNs, and the supportive effect of icariin in relation to cell proliferation and differentiation. Taken together, given the achieved structural and biological properties and effective drug delivery capability, the hydrogel nanocomposites show promising potential for bone tissue engineering.


Asunto(s)
Gelatina , Nanopartículas , Alginatos , Flavonoides , Humanos , Hidrogeles , Impresión Tridimensional , Dióxido de Silicio , Ingeniería de Tejidos , Andamios del Tejido
16.
Polymers (Basel) ; 13(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34451371

RESUMEN

The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.

17.
Mater Sci Eng C Mater Biol Appl ; 123: 111965, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812593

RESUMEN

For the first time, a biohybrid nanofibrous wound dressing is developed via green electrospinning of a blend solution of bovine serum albumin (BSA) (1 and 3 wt%) and polycaprolactone (PCL). In such a system, the components are miscible and interact through hydrogen bonding between the carbonyl group of PCL and the amine group of BSA, as verified by ATR-FTIR. As a result, the biohybrid nanofibers show a superior elastic modulus and elongation (300% and 58%, respectively) compared with the neat PCL nanofibers. The included protein induces a hydrophilicity effect to the PCL nanofibers, notably at the higher BSA content (3 wt%). In contrast to the neat nanofibers, the biohybrid ones are bioactive and encourage formation of biominerals (made of amorphous calcium carbonate) on the surface, after immersion in simulated body fluid (SBF). Based on the WST-8 cell viability tests, NIH3T3 fibroblast cells were seen to properly interact with the biohybrid mats and to proliferate in their proximity. SEM images show that the cells largely adhere onto such nanofibers even more than they do on the neat ones and adopt a flattened and stretched shape. In addition, the live/dead assay and phalloidin/DAPI staining assay confirm large cell viability and normal cell morphology on the biohybrid nanofiber mats after 4 days incubation. Taken together, BSA/PCL nanofibers are able to offer optimum mechanical properties (elasticity) as well as mineralization which can potentially stimulate the wound healing process, and can be considered a suitable candidate for wound dressing applications.


Asunto(s)
Nanofibras , Animales , Vendajes , Biomimética , Ratones , Células 3T3 NIH , Poliésteres , Albúmina Sérica Bovina
18.
Nanomaterials (Basel) ; 11(2)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498950

RESUMEN

This study aimed to synthesize a new magnetic photocatalytic nanosystem composed of Ag-CuFe2O4@WO3 and to investigate its photodegradation efficiency for two drug pollutants of Gemfibrozil (GEM) and Tamoxifen (TAM) under Ultraviolet (UV) light irradiation. In this regard, the effect of pH, catalyst dosage, and drug concentration was thoroughly determined. The largest photodegradation level for GEM (81%) and TAM (83%) was achieved at pH 5, a photocatalyst dosage of 0.2 g/L, drug concentration of 5 mg/L, and contact time of 150 min. The drug photodegradation process followed the pseudo first-order kinetic model. In addition to the photodegradation effect, the nanocomposites were proved to be efficient in terms of antibacterial activity, proportional to the Ag doping level. The Ag-CuFe2O4@WO3 nanocomposite exhibited a stable, efficient performance without an obvious catalytic loss after five successive cycles. Taken together, the developed magnetic photocatalyst is able to simultaneously disinfect wastewater streams and to degrade pharmaceutical contaminants and thus shows a promising potential for purification of multi-contaminant water systems.

19.
Front Chem ; 9: 809676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127651

RESUMEN

As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.

20.
Environ Sci Pollut Res Int ; 28(12): 15236-15247, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33236301

RESUMEN

In this study, for the first time, a TiO2/graphene (G) heterostructure was synthesized and doped by Bi and SnO2 nanoparticles through a hydrothermal treatment. The as-synthesized nanocomposite was employed for photocatalytic degradation of pentachlorophenol (PCP) under visible light irradiation. Structural characterizations such as X-ray photoelectron spectroscopy (XPS) and X-ray diffraction spectroscopy (XRD) proved the valence band alignment at Bi/SnO2/TiO2-G interfaces and crystallinity of the nanocomposite, respectively. The as-developed nanocomposite photocatalyst was able to decompose 84% PCP, thanks to the generation of a large number of active OH•- and O2•- radicals. To achieve this optimum photodegradation efficiency, various parameters such as pH, catalyst dosage, and PCP concentration were optimized. The results showed that the PCP photodegradation process followed the first-order kinetic model and the reaction rate constant rose from 0.007 min-1 (Bi) to 0.0149 min-1 (Bi/SnO2/TiO2-G). The PCP photodegradation efficiency did not decrease significantly after 5 cycles, and the nanocomposite photocatalyst still showed a high efficiency of 68% in the last cycle. The excellent photocatalytic activity of Bi/SnO2/TiO2-G is ascribed as well as the heterostructure of the nanocomposite photocatalyst.


Asunto(s)
Grafito , Nanocompuestos , Pentaclorofenol , Catálisis , Luz , Fotólisis , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...