Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31678, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832286

RESUMEN

The effective treatment of cancer presents numerous challenges, including drug resistance and the risk of detrimental effects on normal tissues. Harmine, a beta-carboline alkaloid, has demonstrated diverse biological properties. This study aimed to synthesize and characterize harmine encapsulated in polylactic-co-glycolic acid (PLGA) nanoparticles (Ha-PLGA-NPs) to investigate their potential as agents against cancer and angiogenesis. The synthesized Ha-PLGA-NPs were thoroughly characterized, exhibiting a connected rod-shaped crystal which some retaining the spherical shape of nanoparticles with an average size of 302.96 nm. Furthermore, the nanoparticles demonstrated a dispersion index of 0.23 and a surface charge of -16.51 mV. In vitro cytotoxicity assays conducted on the breast cancer cell line (MCF-7) revealed that Ha-PLGA-NPs possessed significant cytotoxic properties, with an observed IC50 value of 87.74 µg/mL. Notably, no substantial cytotoxicity was observed in human foreskin fibroblasts, indicating a favorable selectivity towards cancer cells. Evaluation of the anti-angiogenic activity of Ha-PLGA-NPs demonstrated a concentration-dependent inhibition of angiogenesis. Mechanistic investigations indicated that the observed inhibition was mediated through the regulation of key genes involved in angiogenesis, including caspase 3, caspase 9, VEGF, and VEGF-R. In vivo studies involving dietary administration of Ha-PLGA-NPs in mice revealed improvements in weight gain, feed intake, liver enzyme levels, and redox potential. These findings underscore the potential of Ha-PLGA-NPs as a promising therapeutic agent for cancer treatment. The observed effects are attributed to their ability to induce programmed cell death and inhibit angiogenesis, thus offering a multifaceted approach to combat cancer.

2.
Sci Rep ; 14(1): 14769, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926533

RESUMEN

Entrapping phytochemical bioactive compounds into nano-structured biocompatible polymers has been successfully utilized for improving cancer treatment efficiency. Silibinin is a potent compound that shows promising anticancer properties. In the present study, the Zein-ß-cyclodextrin complex was used to encapsulate silibinin and evaluate the induced cell death type and cytotoxic impacts on human cancer cells. The silibinin-loaded Zein-ß cyclodextrin nano-carriers (SZBC-NCs) were synthesized utilizing a gradual ultrasound-mediated homogenization technique and characterized by Zeta potential, DLS, FESEM, and FTIR analysis. The SZBC-NCs' antioxidant activity was studied by conducting ABTS and DPPH radical scavenging assays. Finally, the SZBC-NCs selective toxicity and cellular death induction mechanism were studied on the HT-29 and AGS cancer cells by measuring the cell survival and apoptotic gene (Caspase 3, 9), respectively, which were verified by conducting the DAPI staining analysis. The negatively charged (- 27.47 mV) nanoparticles (286.55 nm) showed significant ABTS and DPPH radical scavenging activity. Moreover, the remarkable decrease in the IC50 concentrations of the SZBC-NCs among the HT-29 and AGS cancer cell lines exhibited their selective cytotoxic potential. Also, the overexpressed apoptotic (Caspases 3 and 9) and down-regulated necrotic (NFKB) gene expressions following the SZBC-NCs treatment doses indicated the apoptotic activity of SZBC-NCs, which were verified by the increased apoptotic morphology of the DAPI-stained HT-29 cancer cells. The antioxidant and colon cancer cell-related apoptotic activity of the SZBC-NCs make it an appropriate anti-colon cancer nano delivery system. Therefore, they can potentially be used as a safe efficient colon cancer treatment strategy. However, further in vivo experiments including animal cancer models have to be studied.


Asunto(s)
Antioxidantes , Silibina , Zeína , beta-Ciclodextrinas , Humanos , Zeína/química , Silibina/farmacología , Silibina/química , Células HT29 , beta-Ciclodextrinas/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Sci Rep ; 14(1): 13985, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886450

RESUMEN

Crocin is a carotenoid compound in saffron with anti-cancer properties. However, its therapeutic application is limited by its low absorption, bioavailability, and stability, which can be overcome through nanocarrier delivery systems. This study used surface-modified Nano-crystalline cellulose (NCC) to deliver crocin to cancer cells. NCC modified with CTAB were loaded with crocin and then conjugated with folic acid (NCF-CR-NPs). The synthesized nanoparticles (NPs) were characterized using FTIR, XRD, DLS, and FESEM. The crystallinity index of NCC was 66.64%, higher than microcrystalline cellulose (61.4%). The crocin loading and encapsulation efficiency in NCF-CR-NPs were evaluated. Toxicity testing by MTT assay showed that NCF-CR-NPs had higher toxicity against various cancer cell lines, including colon cancer HT-29 cells (IC50 ~ 11.6 µg/ml), compared to free crocin. Fluorescent staining, flow cytometry, and molecular analysis confirmed that NCF-CR-NPs induced apoptosis in HT-29 cells by increasing p53 and caspase 8 expression. The antioxidant capacity of NCF-CR-NPs was also evaluated using ABTS and DPPH radical scavenging assays. NCF-CR-NPs exhibited high free radical scavenging ability, with an IC50 of ~ 46.5 µg/ml for ABTS. In conclusion, this study demonstrates the potential of NCF-CR-NPs to deliver crocin to cancer cells effectively. The NPs exhibited enhanced anti-cancer and antioxidant activities compared to free crocin, making them a promising nanocarrier system for crocin-based cancer therapy.


Asunto(s)
Apoptosis , Carotenoides , Celulosa , Ácido Fólico , Nanopartículas , Carotenoides/química , Carotenoides/farmacología , Ácido Fólico/química , Ácido Fólico/farmacología , Humanos , Celulosa/química , Nanopartículas/química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Células HT29 , Portadores de Fármacos/química , Antioxidantes/farmacología , Antioxidantes/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos
4.
Sci Rep ; 14(1): 11450, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769394

RESUMEN

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Asunto(s)
Antineoplásicos , Indoles , Nanopartículas , Polímeros , Dióxido de Silicio , Humanos , Indoles/química , Indoles/farmacología , Dióxido de Silicio/química , Polímeros/química , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Porosidad , Células MCF-7 , Umbeliferonas/química , Umbeliferonas/farmacología , Portadores de Fármacos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
5.
J Biomater Sci Polym Ed ; 35(12): 1845-1862, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809850

RESUMEN

In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.


Asunto(s)
Antineoplásicos , Apoptosis , Ácido Fólico , Nanopartículas , Albúmina Sérica Bovina , Silibina , Óxido de Zinc , Humanos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Albúmina Sérica Bovina/química , Nanopartículas/química , Ácido Fólico/química , Ácido Fólico/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Silibina/farmacología , Silibina/química , Antioxidantes/farmacología , Antioxidantes/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Animales , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Bovinos
6.
Curr Med Chem ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561618

RESUMEN

BACKGROUND: The beneficial effects of curcumin against various chronic disorders have been shown in the last few decades. However, due to its low bioavailability, therapeutic effects are less than expected. Piperine has been used in scientific evaluations as an effective compound to increase the bioavailability of curcumin. The present review investigated the impact of curcumin plus piperine intake on oxidative stress and inflammatory markers of Randomized Clinical Trials (RCTs). METHODS: Using relevant keywords, we searched Cochrane Library, Scopus, PubMed, and Web of Science between January 1st, 1970, and September 30th, 2022. A comprehensive search for RCTs was performed. Continuous data were pooled by Standard Mean Difference (SMD) and 95% confidence interval. All related statistical analyses were performed using Comprehensive Meta-Analysis (CMA) software. RESULTS: A total of 13 articles were incorporated into the final meta-analysis. According to the current meta-analysis, curcumin plus piperine administration showed a significantly increased SOD activity and GSH levels while significantly decreased MDA concentrations. In addition, our study revealed that curcumin plus piperine significantly decreased TNF-α and IL-6 concentrations. CONCLUSION: These results indicated that curcumin plus piperine administration could effectively reduce oxidative stress and inflammation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38483577

RESUMEN

Applying nanotechnology to design drug delivery systems is a promising turning point in cancer treatment strategies. In the current study, Lawson, a nonpolar anticancer phytochemical, was entrapped into ß-cyclodextrin polymer to evaluate its selective cytotoxicity in several types of human cancer cell lines including MCF-7, AGS, A549, and PC3. The Lawson-loaded ß-cyclodextrin nanocarriers (LB-NCs) were produced by applying a high-energy ultrasound-mediated homogenization technique. The LB-NCs were characterized by applying dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential, and field emission scanning electron microscopy (FESEM) analysis. Also, the selective cytotoxic impact of the LB-NCs was studied by conducting the MTT assay on human MCF-7, AGS, A549, and PC3 cancer cell lines. Finally, the type of cellular death was evaluated by measuring the cell cycle status and apoptotic gene expression profile of the treated MCF-7 cells by conducting flow cytometry and Q-PCR methods, respectively. The synthesized negatively charged (- 23.8 mV) nanoparticles (348.12 nm) exhibited apoptotic activity in the human breast MCF-7 cancer cells by upregulating the apoptotic gene expression profile (Caspase 3, 8, and 9). The LB-NCs exhibited a significant selective cytotoxic effect on the human cancer cell lines compared with the normal HUVEC cells. However, variable toxic intensities were detected depending on the cancer cell type. Selective cancer cell-depended anticancer activity of the produced LB-NCs has the potential to be considered their safe efficient targeted anticancer activity. However, studying the animal cancer models has to be conducted to verify their selective toxicity and clarify the cellular death mechanism.

8.
Curr Med Chem ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38265398

RESUMEN

BACKGROUND: Metabolic syndrome is a multifactorial disorder and genetics, lifestyle, and aging play important roles in its prevalence. Nigella sativa has several pharmacological benefits, including anti-inflammatory, antitumor, anti-diabetic, antioxidant, and hypolipidemic effects. This meta-analysis of randomized controlled trials assesses the effect of N. sativa consumption on lipid profile and glycemic indices in patients with metabolic syndrome. METHODS: We systematically researched Cochrane Library, PubMed, Scopus, and Web of Science databases. The literature research identified 171 studies with duplication. Of those, 73 articles were screened for titles and abstracts, and 7 studies were finally selected for the meta-analysis. Because of the high degree of heterogeneity, we performed subgroup analyses based on the dose of N. sativa (<=500 mg/day or >500 mg/day). RESULTS: The results revealed that N. sativa intake significantly decreased total cholesterol (SMD: -0.71; 95% CI, -1.44 to -0.38; P = 0.00), LDL-C (SMD: -1.06; 95% CI, -1.45 to -0.66; P = 0.00) and HDL-C (SMD: -0.31; 95% CI, 0.09 to 0.53; P = 0.01) concentrations. In addition, N. sativa significantly decreased FBS (SMD: -0.8; 95% CI, -1.21 to -0.39; P = 0.00) and HbA1c (SMD: -0.37; 95% CI, -0.66 to -0.09; P = 0.01) concentrations. No publication bias was observed, and sensitivity analysis showed stable results. CONCLUSION: The current systematic review and meta-analysis indicates that N. sativa could improve lipid profile and glycemic index in patients with metabolic syndrome.

9.
Iran J Basic Med Sci ; 27(2): 180-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234667

RESUMEN

Objectives: Harmaline and green-synthesized silver nanoparticles were encapsulated by folate-linked chitosan molecules as a receptor-mediated drug delivery system to evaluate its pro-apoptotic and anti-metastatic potentials on human ovarian (A2780) and epithelioid (PANC) cancer cells. Materials and Methods: The Ag nanoparticles (AgNP) were synthesized utilizing an herbal bio-platform (Bistorta officinalis) and embedded with harmalin. The Harmaline-ag containing folate-linked chitosan nanoparticles (HA-fCNP) were synthesized utilizing the ionic gelation method. Both the AgNP and HA-fCNP nanoparticles were characterized by DLS, FESEM, and Zeta potential analysis. Moreover, the chemical properties of HA-fCNP and the crystallinity of AgNPs were determined by applying FTIR and XRD methods, respectively. The HA-fCNP cytotoxicity was analyzed on A2780, PANC, and HFF cell lines. Moreover, pro-apoptotic and anti-metastatic potentials of HA-fCNP were studied by analyzing the BAX-BCL2 and MMP2-MMP9 gene expression profiles, respectively. The A2780 cellular death was determined by AO/PI and flow cytometry methods. Results: The HA-fCNP significantly exhibited a selective cytotoxic impact on A2780 and PANC cancerous cell lines compared with normal human foreskin fibroblast (HFF) cells. The increased SubG1-arrested A2780 cells and up-regulated BAX gene expression following the increased treatment concentrations of hA-fCNP indicated its selective pro-apoptotic activity on A2780 cells. Also, the notable down-regulated expressions of MMP2 and MMP9 metastatic genes following the increasing doses of HA-fCNP treatment on A2780 cells confirmed its anti-metastatic activity. Conclusion: The cancer-selective cytotoxicity, apoptotic, and anti-metastatic properties of HA-fCNP are considered the appropriate properties of an anticancer compound.

10.
Mol Biol Rep ; 51(1): 85, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183506

RESUMEN

BACKGROUND: Urolithin B (UB), the antioxidant polyphenol has a protective impact on several organs against oxidative stress. However, its bioactivity is limited by its hydrophobic structure. In the current study, UB was encapsulated into a liposomal structure to improve its bioactivities anticancer, and antimicrobial potential. METHOD: The UB nano-emulsions (UB-NE) were synthesized and characterized utilizing FESEM, DLS, FTIR, and Zeta-potential analysis. The UB-NMs' selective toxicity was studied by conducting an MTT assay on MCF-7, PANC, AGS, and ASPC1 cells. The AO/PI analysis verified the UB-NMs' cytotoxicity on ASPC1 cell lines and approved the MTT results. Finally, the antibacterial activity of the UB-NMs was studied on both gram-positive (B. subtilis, S. aureus) and gram-negative (E. Coli, P. aeruginosa) bacteria by conducting MIC and MBC analysis. RESULT: The 68.15 nm UB-NMs did not reduce the normal HDF cells' survival. However, they reduced the cancer cells' (PANC and AGS cell lines) survival at high treatment concentrations (> 250 µg/mL) compared with normal HDF and cancer MCF-7 cells. Moreover, the IC50 doses of UB-NMs for the ASPC1 and PANC cancer cells were measured at 44.87, and 221.02 µg/mL, respectively. The UB-NMs selectively exhibited apoptotic-mediated cytotoxicity on the human pancreatic tumor cell line (ASPC1) by down-regulating BCL2 and NFKB gene expression. Also, the BAX gene expression was up-regulated in the ASPC1-treated cells. Moreover, they exhibited significant anti-bactericidal activity against the E. coli (MIC = 50 µg/mL, MBC = 150 µg/mL), P. aeruginosa (MIC = 75 µg/mL, MBC = 275 µg/mL), B. subtilis (MIC = 125 µg/mL, MBC = 450 µg/mL), and S. aureus (MIC = 50 µg/mL, MBC = 200 µg/mL) strains. CONCLUSION: The significant selective cytotoxic impact of the UB-NMs on the human pancreatic tumor cell line makes it an applicable anti-pancreatic cancer compound. Moreover, the antibacterial activity of UB-NMs has the potential to decrease bacterial-mediated pancreatic cancer. However, several bacterial strains and further cancer cell lines are required to verify the UB-NMs' anticancer potential.


Asunto(s)
Escherichia coli , Neoplasias Pancreáticas , Humanos , Staphylococcus aureus , Antibacterianos/farmacología , Células MCF-7
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4435-4445, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38108837

RESUMEN

An anticancer agent derived from a natural product, parthenolide (PN), was studied to formulate PN into poly(lactic-co-glycolic acid) (PLGA). Polydopamine (PDA) was employed to modify the surface of PN-PLGA. Following characterization, the PN-PLGA-PDA was evaluated for its in vitro release, cytotoxicity, and ability to induce apoptosis using flow cytometry and real-time quantitative PCR. According to the present study, PN-PLGA-PDA had a size of 195.5 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. The SEM results confirmed the size and spherical shape of the nanoparticles. The percentage of encapsulation efficiency was 96.9%. The zeta potential of PN-PLGA-PDA was - 31.8 mV which was suitable for its stability. FTIR spectra of the PN-PLGA-PDA indicated the chemical stability of the PN due to intermolecular hydrogen bonds between polymer and drug. The release of PN from PN-PLGA-PDA in PBS (pH 7.4) was only 20% during the first 48 h and less than 40% during 144 h. PN-PLGA-PDA exhibited anticancer properties in a dose-dependent manner that was more cytotoxic against cancer cells than normal cells. Moreover, real-time qPCR results indicated that the formulation activated apoptosis genes to exert its cytotoxic effect and activate the NF-kB pathway. Based on our findings, PN-PLGA-PDA could serve as a potential treatment for cancer.


Asunto(s)
Apoptosis , Indoles , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Sesquiterpenos , Neoplasias Gástricas , Apoptosis/efectos de los fármacos , Humanos , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Línea Celular Tumoral , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/administración & dosificación , Polímeros/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanopartículas/química , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Ácido Poliglicólico/química , Ácido Láctico/química , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA