Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Abdom Radiol (NY) ; 49(4): 1194-1201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368481

RESUMEN

INTRODUCTION: Accurate diagnosis and treatment of kidney tumors greatly benefit from automated solutions for detection and classification on MRI. In this study, we explore the application of a deep learning algorithm, YOLOv7, for detecting kidney tumors on contrast-enhanced MRI. MATERIAL AND METHODS: We assessed the performance of YOLOv7 tumor detection on excretory phase MRIs in a large institutional cohort of patients with RCC. Tumors were segmented on MRI using ITK-SNAP and converted to bounding boxes. The cohort was randomly divided into ten benchmarks for training and testing the YOLOv7 algorithm. The model was evaluated using both 2-dimensional and a novel in-house developed 2.5-dimensional approach. Performance measures included F1, Positive Predictive Value (PPV), Sensitivity, F1 curve, PPV-Sensitivity curve, Intersection over Union (IoU), and mean average PPV (mAP). RESULTS: A total of 326 patients with 1034 tumors with 7 different pathologies were analyzed across ten benchmarks. The average 2D evaluation results were as follows: Positive Predictive Value (PPV) of 0.69 ± 0.05, sensitivity of 0.39 ± 0.02, and F1 score of 0.43 ± 0.03. For the 2.5D evaluation, the average results included a PPV of 0.72 ± 0.06, sensitivity of 0.61 ± 0.06, and F1 score of 0.66 ± 0.04. The best model performance demonstrated a 2.5D PPV of 0.75, sensitivity of 0.69, and F1 score of 0.72. CONCLUSION: Using computer vision for tumor identification is a cutting-edge and rapidly expanding subject. In this work, we showed that YOLOv7 can be utilized in the detection of kidney cancers.


Asunto(s)
Carcinoma de Células Renales , Aprendizaje Profundo , Neoplasias Renales , Humanos , Imagen por Resonancia Magnética , Carcinoma de Células Renales/diagnóstico por imagen , Neoplasias Renales/diagnóstico por imagen , Algoritmos
2.
J Magn Reson Imaging ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299714

RESUMEN

BACKGROUND: Pathology grading is an essential step for the treatment and evaluation of the prognosis in patients with clear cell renal cell carcinoma (ccRCC). PURPOSE: To investigate the utility of texture analysis in evaluating Fuhrman grades of renal tumors in patients with Von Hippel-Lindau (VHL)-associated ccRCC, aiming to improve non-invasive diagnosis and personalized treatment. STUDY TYPE: Retrospective analysis of a prospectively maintained cohort. POPULATION: One hundred and thirty-six patients, 84 (61%) males and 52 (39%) females with pathology-proven ccRCC with a mean age of 52.8 ± 12.7 from 2010 to 2023. FIELD STRENGTH AND SEQUENCES: 1.5 and 3 T MRIs. Segmentations were performed on the T1-weighted 3-minute delayed sequence and then registered on pre-contrast, T1-weighted arterial and venous sequences. ASSESSMENT: A total of 404 lesions, 345 low-grade tumors, and 59 high-grade tumors were segmented using ITK-SNAP on a T1-weighted 3-minute delayed sequence of MRI. Radiomics features were extracted from pre-contrast, T1-weighted arterial, venous, and delayed post-contrast sequences. Preprocessing techniques were employed to address class imbalances. Features were then rescaled to normalize the numeric values. We developed a stacked model combining random forest and XGBoost to assess tumor grades using radiomics signatures. STATISTICAL TESTS: The model's performance was evaluated using positive predictive value (PPV), sensitivity, F1 score, area under the curve of receiver operating characteristic curve, and Matthews correlation coefficient. Using Monte Carlo technique, the average performance of 100 benchmarks of 85% train and 15% test was reported. RESULTS: The best model displayed an accuracy of 0.79. For low-grade tumor detection, a sensitivity of 0.79, a PPV of 0.95, and an F1 score of 0.86 were obtained. For high-grade tumor detection, a sensitivity of 0.78, PPV of 0.39, and F1 score of 0.52 were reported. DATA CONCLUSION: Radiomics analysis shows promise in classifying pathology grades non-invasively for patients with VHL-associated ccRCC, potentially leading to better diagnosis and personalized treatment. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

3.
Acad Radiol ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38087718

RESUMEN

RATIONALE AND OBJECTIVES: To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS: Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS: There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION: Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT: Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.

4.
Eur Urol Open Sci ; 57: 66-73, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020527

RESUMEN

Background: The von Hippel-Lindau disease (VHL) is a hereditary cancer syndrome with multifocal, bilateral cysts and solid tumors of the kidney. Surgical management may include multiple extirpative surgeries, which ultimately results in parenchymal volume loss and subsequent renal function decline. Recent studies have utilized parenchyma volume as an estimate of renal function prior to surgery for renal cell carcinoma; however, it is not yet validated for surgically altered kidneys with multifocal masses and complex cysts such as are present in VHL. Objective: We sought to validate a magnetic resonance imaging (MRI)-based volumetric analysis with mercaptoacetyltriglycine (MAG-3) renogram and postoperative renal function. Design setting and participants: We identified patients undergoing renal surgery at the National Cancer Institute from 2015 to 2020 with preoperative MRI. Renal tumors, cysts, and parenchyma of the operated kidney were segmented manually using ITK-SNAP software. Outcome measurements and statistical analysis: Serum creatinine and urinalysis were assessed preoperatively, and at 3- and 12-mo follow-up time points. Estimated glomerular filtration rate (eGFR) was calculated using serum creatinine-based CKD-EPI 2021 equation. A statistical analysis was conducted on R Studio version 4.1.1. Results and limitations: Preoperative MRI scans of 113 VHL patients (56% male, median age 48 yr) were evaluated between 2015 and 2021. Twelve (10.6%) patients had a solitary kidney at the time of surgery; 59 (52%) patients had at least one previous partial nephrectomy on the renal unit. Patients had a median of three (interquartile range [IQR]: 2-5) tumors and five (IQR: 0-13) cysts per kidney on imaging. The median preoperative GFR was 70 ml/min/1.73 m2 (IQR: 58-89). Preoperative split renal function derived from MAG-3 studies and MRI split renal volume were significantly correlated (r = 0.848, p < 0.001). On the multivariable analysis, total preoperative parenchymal volume, solitary kidney, and preoperative eGFR were significant independent predictors of 12-mo eGFR. When only considering patients with two kidneys undergoing partial nephrectomy, preoperative parenchymal volume and eGFR remained significant predictors of 12-mo eGFR. Conclusions: A parenchyma volume analysis on preoperative MRI correlates well with renogram split function and can predict long-term renal function with added benefit of anatomic detail and ease of application. Patient summary: Prior to kidney surgery, it is important to understand the contribution of each kidney to overall kidney function. Nuclear medicine scans are currently used to measure split kidney function. We demonstrated that kidney volumes on preoperative magnetic resonance imaging can also be used to estimate split kidney function before surgery, while also providing essential details of tumor and kidney anatomy.

5.
PLoS One ; 18(7): e0287299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498830

RESUMEN

PURPOSE: Differentiation of fat-poor angiomyolipoma (fp-AMLs) from renal cell carcinoma (RCC) is often not possible from just visual interpretation of conventional cross-sectional imaging, typically requiring biopsy or surgery for diagnostic confirmation. However, radiomics has the potential to characterize renal masses without the need for invasive procedures. Here, we conducted a systematic review on the accuracy of CT radiomics in distinguishing fp-AMLs from RCCs. METHODS: We conducted a search using PubMed/MEDLINE, Google Scholar, Cochrane Library, Embase, and Web of Science for studies published from January 2011-2022 that utilized CT radiomics to discriminate between fp-AMLs and RCCs. A random-effects model was applied for the meta-analysis according to the heterogeneity level. Furthermore, subgroup analyses (group 1: RCCs vs. fp-AML, and group 2: ccRCC vs. fp-AML), and quality assessment were also conducted to explore the possible effect of interstudy differences. To evaluate CT radiomics performance, the pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were assessed. This study is registered with PROSPERO (CRD42022311034). RESULTS: Our literature search identified 10 studies with 1456 lesions in 1437 patients. Pooled sensitivity was 0.779 [95% CI: 0.562-0.907] and 0.817 [95% CI: 0.663-0.910] for groups 1 and 2, respectively. Pooled specificity was 0.933 [95% CI: 0.814-0.978]and 0.926 [95% CI: 0.854-0.964] for groups 1 and 2, respectively. Also, our findings showed higher sensitivity and specificity of 0.858 [95% CI: 0.742-0.927] and 0.886 [95% CI: 0.819-0.930] for detecting ccRCC from fp-AML in the unenhanced phase of CT scan as compared to the corticomedullary and nephrogenic phases of CT scan. CONCLUSION: This study suggested that radiomic features derived from CT has high sensitivity and specificity in differentiating RCCs vs. fp-AML, particularly in detecting ccRCCs vs. fp-AML. Also, an unenhanced CT scan showed the highest specificity and sensitivity as compared to contrast CT scan phases. Differentiating between fp-AML and RCC often is not possible without biopsy or surgery; radiomics has the potential to obviate these invasive procedures due to its high diagnostic accuracy.


Asunto(s)
Angiomiolipoma , Carcinoma de Células Renales , Neoplasias Renales , Leucemia Mieloide Aguda , Humanos , Carcinoma de Células Renales/patología , Angiomiolipoma/diagnóstico por imagen , Angiomiolipoma/patología , Estudios Retrospectivos , Diagnóstico Diferencial , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Tomografía Computarizada por Rayos X/métodos , Sensibilidad y Especificidad , Leucemia Mieloide Aguda/diagnóstico
6.
Radiographics ; 43(7): e220196, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37384546

RESUMEN

The two primary nephron-sparing interventions for treating renal masses such as renal cell carcinoma are surgical partial nephrectomy (PN) and image-guided percutaneous thermal ablation. Nephron-sparing surgery, such as PN, has been the standard of care for treating many localized renal masses. Although uncommon, complications resulting from PN can range from asymptomatic and mild to symptomatic and life-threatening. These complications include vascular injuries such as hematoma, pseudoaneurysm, arteriovenous fistula, and/or renal ischemia; injury to the collecting system causing urinary leak; infection; and tumor recurrence. The incidence of complications after any nephron-sparing surgery depends on many factors, such as the proximity of the tumor to blood vessels or the collecting system, the skill or experience of the surgeon, and patient-specific factors. More recently, image-guided percutaneous renal ablation has emerged as a safe and effective treatment option for small renal tumors, with comparable oncologic outcomes to those of PN and a low incidence of major complications. Radiologists must be familiar with the imaging findings encountered after these surgical and image-guided procedures, especially those indicative of complications. The authors review cross-sectional imaging characteristics of complications after PN and image-guided thermal ablation of kidney tumors and highlight the respective management strategies, ranging from clinical observation to interventions such as angioembolization or repeat surgery. Work of the U.S. Government published under an exclusive license with the RSNA. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. Quiz questions for this article are available in the Online Learning Center. See the invited commentary by Chung and Raman in this issue.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Recurrencia Local de Neoplasia , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Nefronas/diagnóstico por imagen , Riñón , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/cirugía
7.
Acad Radiol ; 30(9): 2037-2045, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36966070

RESUMEN

RATIONALE AND OBJECTIVES: Animal modeling of infectious diseases such as coronavirus disease 2019 (COVID-19) is important for exploration of natural history, understanding of pathogenesis, and evaluation of countermeasures. Preclinical studies enable rigorous control of experimental conditions as well as pre-exposure baseline and longitudinal measurements, including medical imaging, that are often unavailable in the clinical research setting. Computerized tomography (CT) imaging provides important diagnostic, prognostic, and disease characterization to clinicians and clinical researchers. In that context, automated deep-learning systems for the analysis of CT imaging have been broadly proposed, but their practical utility has been limited. Manual outlining of the ground truth (i.e., lung-lesions) requires accurate distinctions between abnormal and normal tissues that often have vague boundaries and is subject to reader heterogeneity in interpretation. Indeed, this subjectivity is demonstrated as wide inconsistency in manual outlines among experts and from the same expert. The application of deep-learning data-science tools has been less well-evaluated in the preclinical setting, including in nonhuman primate (NHP) models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection/COVID-19, in which the translation of human-derived deep-learning tools is challenging. The automated segmentation of the whole lung and lung lesions provides a potentially standardized and automated method to detect and quantify disease. MATERIALS AND METHODS: We used deep-learning-based quantification of the whole lung and lung lesions on CT scans of NHPs exposed to SARS-CoV-2. We proposed a novel multi-model ensemble technique to address the inconsistency in the ground truths for deep-learning-based automated segmentation of the whole lung and lung lesions. Multiple models were obtained by training the convolutional neural network (CNN) on different subsets of the training data instead of having a single model using the entire training dataset. Moreover, we employed a feature pyramid network (FPN), a CNN that provides predictions at different resolution levels, enabling the network to predict objects with wide size variations. RESULTS: We achieved an average of 99.4 and 60.2% Dice coefficients for whole-lung and lung-lesion segmentation, respectively. The proposed multi-model FPN outperformed well-accepted methods U-Net (50.5%), V-Net (54.5%), and Inception (53.4%) for the challenging lesion-segmentation task. We show the application of segmentation outputs for longitudinal quantification of lung disease in SARS-CoV-2-exposed and mock-exposed NHPs. CONCLUSION: Deep-learning methods should be optimally characterized for and targeted specifically to preclinical research needs in terms of impact, automation, and dynamic quantification independently from purely clinical applications.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Animales , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Primates , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
8.
Clin Imaging ; 94: 9-17, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36459898

RESUMEN

BACKGROUND: Radiomics is a type of quantitative analysis that provides a more objective approach to detecting tumor subtypes using medical imaging. The goal of this paper is to conduct a comprehensive assessment of the literature on computed tomography (CT) radiomics for distinguishing renal cell carcinomas (RCCs) from oncocytoma. METHODS: From February 15th 2012 to 2022, we conducted a broad search of the current literature using the PubMed/MEDLINE, Google scholar, Cochrane Library, Embase, and Web of Science. A meta-analysis of radiomics studies concentrating on discriminating between oncocytoma and RCCs was performed, and the risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies method. The pooled sensitivity, specificity, and diagnostic odds ratio were evaluated via a random-effects model, which was applied for the meta-analysis. This study is registered with PROSPERO (CRD42022311575). RESULTS: After screening the search results, we identified 6 studies that utilized radiomics to distinguish oncocytoma from other renal tumors; there were a total of 1064 lesions in 1049 patients (288 oncocytoma lesions vs 776 RCCs lesions). The meta-analysis found substantial heterogeneity among the included studies, with pooled sensitivity and specificity of 0.818 [0.619-0.926] and 0.808 [0.537-0.938], for detecting different subtypes of RCCs (clear cell RCC, chromophobe RCC, and papillary RCC) from oncocytoma. Also, a pooled sensitivity and specificity of 0.83 [0.498-0.960] and 0.92 [0.825-0.965], respectively, was found in detecting oncocytoma from chromophobe RCC specifically. CONCLUSIONS: According to this study, CT radiomics has a high degree of accuracy in distinguishing RCCs from RO, including chromophobe RCCs from RO. Radiomics algorithms have the potential to improve diagnosis in scenarios that have traditionally been ambiguous. However, in order for this modality to be implemented in the clinical setting, standardization of image acquisition and segmentation protocols as well as inter-institutional sharing of software is warranted.


Asunto(s)
Adenoma Oxifílico , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico , Adenoma Oxifílico/diagnóstico por imagen , Adenoma Oxifílico/patología , Neoplasias Renales/diagnóstico , Tomografía Computarizada por Rayos X , Sensibilidad y Especificidad , Diagnóstico Diferencial
9.
Diagn Interv Radiol ; 28(3): 264-274, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35748211

RESUMEN

PURPOSE The purpose of this study is to compare spectral segmentation, spectral radiomic, and single- energy radiomic features in the assessment of internal and common carotid artery (ICA/CCA) stenosis and prediction of surgical outcome. METHODS Our ethical committee-approved, Health Insurance Portability and Accountability Act (HIPAA)- compliant study included 85 patients (mean age, 73 ± 10 years; male : female, 56 : 29) who under- went contrast-enhanced, dual-source dual-energy CT angiography (DECTA) (Siemens Definition Flash) of the neck for assessing ICA/CCA stenosis. Patients with a prior surgical or interventional treatment of carotid stenosis were excluded. Two radiologists graded the severity of carotid ste- nosis on DECTA images as mild (<50% luminal narrowing), moderate (50%-69%), and severe (>70%) stenosis. Thin-section, low- and high-kV DICOM images from the arterial phase acquisi- tion were processed with a dual-energy CT prototype (DTA, eXamine, Siemens Healthineers) to generate spectral segmentation and radiomic features over regions of interest along the entire length (volume) and separately at a single-section with maximum stenosis. Multiple logistic regressions and area under the receiver operating characteristic curve (AUC) were used for data analysis. RESULTS Among 85 patients, 22 ICA/CCAs had normal luminal dimensions and 148 ICA/CCAs had luminal stenosis (mild stenosis: 51, moderate: 38, severe: 59). For differentiating non-severe and severe ICA/CCA stenosis, radiomic features (volume: AUC=0.94, 95% CI 0.88-0.96; section: AUC=0.92, 95% CI 0.86-0.93) were significantly better than spectral segmentation features (volume: AUC = 0.86, 95% CI 0.74-0.87; section: AUC = 0.68, 95% CI 0.66-0.78) (P < .001). Spectral radiomic features predicted revascularization procedure (AUC = 0.77) and the presence of ipsilateral intra- cranial ischemic changes (AUC = 0.76). CONCLUSION Spectral segmentation and radiomic features from DECTA can differentiate patients with differ- ent luminal ICA/CCA stenosis grades.


Asunto(s)
Estenosis Carotídea , Anciano , Anciano de 80 o más Años , Angiografía , Arteria Carótida Interna , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Constricción Patológica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC
10.
Clin Imaging ; 86: 25-30, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35316621

RESUMEN

PURPOSE: We evaluated and compared performance of an acute pulmonary embolism (PE) triaging artificial intelligence (PE-AI) model in suboptimal and optimal CT pulmonary angiography (CTPA). METHODS: In an IRB approved, retrospective study we identified 104 consecutive, suboptimal CTPA which were deemed as suboptimal for PE evaluation in radiology reports due to motion, artifacts and/or inadequate contrast enhancement. We enriched this dataset, with additional 226 optimal CTPA (over same timeframe as suboptimal CTPA) with and without PE. Two thoracic radiologists (ground truth) independently reviewed all 330 CTPA for adequacy (to assess PE down to distal segmental level), reason for suboptimal CTPA (artifacts or poor contrast enhancement), as well as for presence and location of PE. CT values (HU) were measured in the main pulmonary artery. Same attributes were assessed in 80 patients who had repeat or follow-up CTPA following suboptimal CTPA. All CTPA were processed with the PE-AI (Aidoc). RESULTS: Among 104 suboptimal CTPA (mean age ± standard deviation 56 ± 15 years), 18/104 (17%) were misclassified as suboptimal for PE evaluation in their radiology reports but relabeled as optimal on ground truth evaluation. Of 226 optimal CTPA, 47 (21%) were reclassified as suboptimal CTPA. PEs were present in 97/330 CTPA. PE-AI had similar performance on suboptimal CTPA (sensitivity 100%; specificity 89%; AUC 0.89, 95% CI 0.80-0.98) and optimal CTPA (sensitivity 96%; specificity 92%; AUC 0.87, 95% CI 0.81-0.93). CONCLUSION: Suboptimal CTPA examinations do not impair the performance of PE-AI triage model; AI retains clinically meaningful sensitivity and high specificity regardless of diagnostic quality.


Asunto(s)
Embolia Pulmonar , Triaje , Angiografía , Inteligencia Artificial , Angiografía por Tomografía Computarizada , Medios de Contraste , Humanos , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos
11.
Acad Radiol ; 29(5): 705-713, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34412944

RESUMEN

RATIONALE AND OBJECTIVES: To compare dual energy CT (DECT) quantitative metrics and radiomics for differentiating benign and malignant pancreatic lesions on contrast enhanced abdomen CT. MATERIALS AND METHODS: Our study included 103 patients who underwent contrast-enhanced DECT for assessing focal pancreatic lesions at one of the two hospitals (Site A: age 68 ± 12 yrs; malignant = 41, benign = 18; Site B: age 46 ± 2 yrs; malignant = 23, benign = 21). All malignant lesions had histologic confirmation, and benign lesions were stable on follow up CT (>12 months) or had characteristic benign features on MRI. Arterial-phase, low- and high-kV DICOM images were processed with the DECT Tumor Analysis (DETA) to obtain DECT quantitative metrics such as HU, iodine and water content from a region of interest (ROI) over focal pancreatic lesions. Separately, we obtained DECT radiomics from the same ROI. Data were analyzed with multiple logistic regression and receiver operating characteristics to generate area under the curve (AUC) for best predictive variables. RESULTS: DECT quantitative metrics and radiomics had AUCs of 0.98-0.99 at site A and 0.89-0.94 at site B data for classifying benign and malignant pancreatic lesions. There was no significant difference in the AUCs and accuracies of DECT quantitative metrics and radiomics from lesion rims and volumes among patients at both sites (p > 0.05). Supervised learning-based model with data from the two sites demonstrated best AUCs of 0.94 (DECT radiomics) and 0.90 (DECT quantitative metrics) for characterizing pancreatic lesions as benign or malignant. CONCLUSION: Compared to complex DECT radiomics, quantitative DECT information provide a simpler but accurate method of differentiating benign and malignant pancreatic lesions.


Asunto(s)
Benchmarking , Neoplasias Pancreáticas , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neoplasias Pancreáticas/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
12.
JAMA Netw Open ; 4(12): e2141096, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34964851

RESUMEN

Importance: Most early lung cancers present as pulmonary nodules on imaging, but these can be easily missed on chest radiographs. Objective: To assess if a novel artificial intelligence (AI) algorithm can help detect pulmonary nodules on radiographs at different levels of detection difficulty. Design, Setting, and Participants: This diagnostic study included 100 posteroanterior chest radiograph images taken between 2000 and 2010 of adult patients from an ambulatory health care center in Germany and a lung image database in the US. Included images were selected to represent nodules with different levels of detection difficulties (from easy to difficult), and comprised both normal and nonnormal control. Exposures: All images were processed with a novel AI algorithm, the AI Rad Companion Chest X-ray. Two thoracic radiologists established the ground truth and 9 test radiologists from Germany and the US independently reviewed all images in 2 sessions (unaided and AI-aided mode) with at least a 1-month washout period. Main Outcomes and Measures: Each test radiologist recorded the presence of 5 findings (pulmonary nodules, atelectasis, consolidation, pneumothorax, and pleural effusion) and their level of confidence for detecting the individual finding on a scale of 1 to 10 (1 representing lowest confidence; 10, highest confidence). The analyzed metrics for nodules included sensitivity, specificity, accuracy, and receiver operating characteristics curve area under the curve (AUC). Results: Images from 100 patients were included, with a mean (SD) age of 55 (20) years and including 64 men and 36 women. Mean detection accuracy across the 9 radiologists improved by 6.4% (95% CI, 2.3% to 10.6%) with AI-aided interpretation compared with unaided interpretation. Partial AUCs within the effective interval range of 0 to 0.2 false positive rate improved by 5.6% (95% CI, -1.4% to 12.0%) with AI-aided interpretation. Junior radiologists saw greater improvement in sensitivity for nodule detection with AI-aided interpretation as compared with their senior counterparts (12%; 95% CI, 4% to 19% vs 9%; 95% CI, 1% to 17%) while senior radiologists experienced similar improvement in specificity (4%; 95% CI, -2% to 9%) as compared with junior radiologists (4%; 95% CI, -3% to 5%). Conclusions and Relevance: In this diagnostic study, an AI algorithm was associated with improved detection of pulmonary nodules on chest radiographs compared with unaided interpretation for different levels of detection difficulty and for readers with different experience.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/diagnóstico por imagen , Adulto , Inteligencia Artificial , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Torácica , Sensibilidad y Especificidad , Nódulo Pulmonar Solitario/diagnóstico por imagen
13.
Radiat Prot Dosimetry ; 197(3-4): 135-145, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34875692

RESUMEN

We assessed variations in chest CT usage, radiation dose and image quality in COVID-19 pneumonia. Our study included all chest CT exams performed in 533 patients from 6 healthcare sites from Brazil. We recorded patients' age, gender and body weight and the information number of CT exams per patient, scan parameters and radiation doses (volume CT dose index-CTDIvol and dose length product-DLP). Six radiologists assessed all chest CT exams for the type of pulmonary findings and classified CT appearance of COVID-19 pneumonia as typical, indeterminate, atypical or negative. In addition, each CT was assessed for diagnostic quality (optimal or suboptimal) and presence of artefacts. Artefacts were frequent (367/841), often related to respiratory motion (344/367 chest CT exams with artefacts) and resulted in suboptimal evaluation in mid-to-lower lungs (176/344) or the entire lung (31/344). There were substantial differences in CT usage, patient weight, CTDIvol and DLP across the participating sites.


Asunto(s)
COVID-19 , Brasil , Humanos , Dosis de Radiación , SARS-CoV-2 , Tomografía Computarizada por Rayos X
14.
Radiat Prot Dosimetry ; 195(2): 92-98, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34386818

RESUMEN

Computed tomography (CT) provides useful information in patients with known or suspected COVID-19 infection. However, there are substantial variations and challenges in scanner technologies and scan practices that have negative effect on the image quality and can increase radiation dose associated with CT. OBJECTIVE: In this article, we present major issues and challenges with use of CT at five Brazilian CT facilities for imaging patients with known or suspected COVID-19 infection and offer specific mitigating strategies. METHODS: Observational, retrospective and prospective study of five CT facilities from different states and regions of Brazil, with approval of research and ethics committees. RESULTS: The most important issues include frequent use of CT, lack of up-to-date and efficient scanner technologies, over-scanning and patient off-centring. Mitigating strategies can include updating scanner technology and improving scan practices.


Asunto(s)
COVID-19 , Pandemias , Brasil/epidemiología , Humanos , Estudios Prospectivos , Dosis de Radiación , Estudios Retrospectivos , SARS-CoV-2
15.
Acad Radiol ; 28(7): 972-979, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34217490

RESUMEN

RATIONALE AND OBJECTIVES: We aimed to assess relationship between single-click, whole heart radiomics from low-dose computed tomography (LDCT) for lung cancer screening with coronary artery calcification and stenosis. MATERIALS AND METHODS: The institutional review board-approved, retrospective study included all 106 patients (68 men, 38 women, mean age 64 ± 7 years) who underwent both LDCT for lung cancer screening and had calcium scoring and coronary computed tomography angiography in our institution. We recorded the clinical variables including patients' demographics, smoking history, family history, and lipid profiles. Coronary calcium scores and grading of coronary stenosis were recorded from the radiology information system. We calculated the multiethnic scores for atherosclerosis risk scores to obtain 10-year coronary heart disease (MESA 10-Y CHD) risk of cardiovascular disease for all patients. Deidentified LDCT exams were exported to a Radiomics prototype for automatic heart segmentation, and derivation of radiomics. Data were analyzed using multiple logistic regression and kernel Fisher discriminant analyses. RESULTS: Whole heart radiomics were better than the clinical variables for differentiating subjects with different Agatston scores (≤400 and >400) (area under the curve [AUC] 0.92 vs 0.69). Prediction of coronary stenosis and MESA 10-Y CHD risk was better on whole heart radiomics (AUC:0.86-0.87) than with clinical variables (AUC:0.69-0.79). Addition of clinical variables or visual assessment of coronary calcification from LDCT to whole heart radiomics resulted in a modest change in the AUC. CONCLUSION: Single-click, whole heart radiomics obtained from LDCT for lung cancer screening can differentiate patients with different Agatston and MESA risk scores for cardiovascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Neoplasias Pulmonares , Calcificación Vascular , Anciano , Constricción Patológica , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/epidemiología , Vasos Coronarios , Detección Precoz del Cáncer , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología
16.
Nat Commun ; 12(1): 2963, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017001

RESUMEN

Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening Trial, achieves an area under the curve (AUC) of 0.871 on a separate test set of 2,085 subjects and identifies patients with high CVD mortality risks (AUC of 0.768). We validate our model against ECG-gated cardiac CT based markers, including coronary artery calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD risk estimation.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico , Tamizaje Masivo/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Ensayos Clínicos como Asunto , Vasos Coronarios/diagnóstico por imagen , Conjuntos de Datos como Asunto , Electrocardiografía , Femenino , Estudios de Seguimiento , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/complicaciones , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Tomografía Computarizada por Rayos X/estadística & datos numéricos
17.
Quant Imaging Med Surg ; 11(4): 1134-1143, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33816155

RESUMEN

BACKGROUND: Lung cancer screening (LCS) with low-dose computed tomography (LDCT) helps early lung cancer detection, commonly presenting as small pulmonary nodules. Artificial intelligence (AI)-based vessel suppression (AI-VS) and automatic detection (AI-AD) algorithm can improve detection of subsolid nodules (SSNs) on LDCT. We assessed the impact of AI-VS and AI-AD in detection and classification of SSNs [ground-glass nodules (GGNs) and part-solid nodules (PSNs)], on LDCT performed for LCS. METHODS: Following regulatory approval, 123 LDCT examinations with sub-solid pulmonary nodules (average diameter ≥6 mm) were processed to generate three image series for each examination-unprocessed, AI-VS, and AI-AD series with annotated lung nodules. Two thoracic radiologists in consensus formed the standard of reference (SOR) for this study. Two other thoracic radiologists (R1 and R2; 5 and 10 years of experience in thoracic CT image interpretation) independently assessed the unprocessed images alone, then together with AI-VS series, and finally with AI-AD for detecting all ≥6 mm GGN and PSN. We performed receiver operator characteristics (ROC) and Cohen's Kappa analyses for statistical analyses. RESULTS: On unprocessed images, R1 and R2 detected 232/310 nodules (R1: 114 GGN, 118 PSN) and 255/310 nodules (R2: 122 GGN, 133 PSN), respectively (P>0.05). On AI-VS images, they detected 249/310 nodules (119 GGN, 130 PSN) and 277/310 nodules (128 GGN, 149 PSN), respectively (P≥0.12). When compared to the SOR, accuracy (AUC) for detection of PSN on the AI-VS images (AUC 0.80-0.81) was greater than on the unprocessed images (AUC 0.70-0.76). AI-VS images enabled detection of solid components in five nodules deemed as GGN on the unprocessed images. Accuracy of AI-AD was lower than both the radiologists (AUC 0.60-0.72). CONCLUSIONS: AI-VS improved the detection and classification of SSN into GGN and PSN on LDCT of the chest for the two radiologist (R1 and R2) readers.

18.
Phys Med ; 84: 125-131, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33894582

RESUMEN

PURPOSE: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. METHODS: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). RESULTS: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11-40% relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027-0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). CONCLUSIONS: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses.


Asunto(s)
COVID-19 , Protección Radiológica , Adulto , Brazo , Humanos , Irán , Italia/epidemiología , Pandemias , Dosis de Radiación , SARS-CoV-2
19.
Eur J Radiol ; 139: 109583, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33846041

RESUMEN

PURPOSE: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients' electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction. METHOD: We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. RESULTS: For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort. CONCLUSION: The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Registros Electrónicos de Salud , Humanos , Pulmón , Pronóstico , SARS-CoV-2 , Tomografía Computarizada por Rayos X
20.
J Digit Imaging ; 34(2): 320-329, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33634416

RESUMEN

To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ -200 HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity with and without motion artifacts (AUC 0.94-0.97) as well as for predicting patient outcome (AUC 0.7-0.77) (p > 0.5). Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76-0.82, 95% confidence interval (CI) 0.73-0.82) had higher AUC for predicting ICU admission than the subjective severity scores (AUC 0.69-0.77, 95% CI 0.69-0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opacities from chest CT can help differentiate patients with favorable and adverse outcomes.


Asunto(s)
COVID-19 , Adulto , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Pronóstico , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...