Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 83(6): 1292-1304, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35769019

RESUMEN

The recent emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) has complicated and significantly slowed efforts to eradicate and/or reduce the worldwide incidence of life-threatening acute and chronic cases of tuberculosis. To overcome this setback, researchers have increased the intensity of their work to identify new small-molecule compounds that are expected to remain efficacious antimicrobials against Mtb. Here, we describe our effort to apply the principles of molecular hybridization to synthesize 16 compounds carrying thiophene and thiazole rings beside the core urea functionality (TTU1-TTU16). Following extensive structural characterization, the obtained compounds were initially evaluated for their antimycobacterial activity against Mtb H37Rv. Subsequently, three derivatives standing out with their anti-Mtb activity profiles and low cytotoxicity (TTU5, TTU6, and TTU12) were tested on isoniazid-resistant clinical isolates carrying katG and inhA mutations. Additionally, due to their pharmacophore similarities to the well-known InhA inhibitors, the molecules were screened for their enoyl acyl carrier protein reductase (InhA) inhibitory potentials. Molecular docking studies were performed to support the experimental enzyme inhibition data. Finally, drug-likeness of the selected compounds was established by theoretical calculations of physicochemical descriptors.


Asunto(s)
Proteínas Bacterianas , Urea , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Urea/farmacología
2.
Front Microbiol ; 12: 743198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938276

RESUMEN

Background: Tuberculosis, mainly caused by Mycobacterium tuberculosis (Mtb), is an ancient human disease that gravely affects millions of people annually. We wanted to explore the genetic diversity and lineage-specific association of Mtb with drug resistance among pulmonary tuberculosis patients. Methods: Sputum samples were collected from pulmonary tuberculosis patients at six different healthcare institutions in Tigray, Ethiopia, between July 2018 and August 2019. DNA was extracted from 74 Mtb complex isolates for whole-genome sequencing (WGS). All genomes were typed and screened for mutations with known associations with antimicrobial resistance using in silico methods, and results were cross-verified with wet lab methods. Results: Lineage (L) 4 (55.8%) was predominant, followed by L3 (41.2%); L1 (1.5%) and L2 (1.5%) occurred rarely. The most frequently detected sublineage was CAS (38.2%), followed by Ural (29.4%), and Haarlem (11.8%). The recent transmission index (RTI) was relatively low. L4 and Ural strains were more resistant than the other strains to any anti-TB drug (P < 0.05). The most frequent mutations to RIF, INH, EMB, SM, PZA, ETH, FLQs, and 2nd-line injectable drugs occurred at rpoB S450L, katG S315T, embB M306I/V, rpsL K43R, pncA V139A, ethA M1R, gyrA D94G, and rrs A1401G, respectively. Disputed rpoB mutations were also shown in four (16%) of RIF-resistant isolates. Conclusion: Our WGS analysis revealed the presence of diverse Mtb genotypes. The presence of a significant proportion of disputed rpoB mutations highlighted the need to establish a WGS facility at the regional level to monitor drug-resistant mutations. This will help control the transmission of DR-TB and ultimately contribute to the attainment of 100% DST coverage for TB patients as per the End TB strategy.

3.
Front Microbiol ; 11: 550760, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072011

RESUMEN

Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.

4.
PLoS One ; 12(11): e0187900, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29121674

RESUMEN

Neisseria meningitidis (Nm) is a Gram-negative nasopharyngeal commensal that can cause septicaemia and meningitis. The neisserial DNA damage-inducible protein DinG is a helicase related to the mammalian helicases XPD and FANCJ. These helicases belong to superfamily 2, are ATP dependent and exert 5' → 3' directionality. To better understand the role of DinG in neisserial genome maintenance, the Nm DinG (DinGNm) enzymatic activities were assessed in vitro and phenotypical characterization of a dinG null mutant (NmΔdinG) was performed. Like its homologues, DinGNm possesses 5' → 3' directionality and prefers DNA substrates containing a 5'-overhang. ATPase activity of DinGNm is strictly DNA-dependent and DNA unwinding activity requires nucleoside triphosphate and divalent metal cations. DinGNm directly binds SSBNm with a Kd of 313 nM. Genotoxic stress analysis demonstrated that NmΔdinG was more sensitive to double-strand DNA breaks (DSB) induced by mitomycin C (MMC) than the Nm wildtype, defining the role of neisserial DinG in DSB repair. Notably, when NmΔdinG cells grown under MMC stress assessed by quantitative mass spectrometry, 134 proteins were shown to be differentially abundant (DA) compared to unstressed NmΔdinG cells. Among the DNA replication, repair and recombination proteins affected, polymerase III subunits and recombinational repair proteins RuvA, RuvB, RecB and RecD were significantly down regulated while TopA and SSB were upregulated under stress condition. Most of the other DA proteins detected are involved in metabolic functions. The present study shows that the helicase DinG is probably involved in regulating metabolic pathways as well as in genome maintenance.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Neisseria meningitidis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Helicasas/química , Regulación del Desarrollo de la Expresión Génica , Inestabilidad Genómica , Mitomicina/efectos adversos , Modelos Moleculares , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Filogenia , Estructura Terciaria de Proteína
5.
Microbiology (Reading) ; 163(7): 1016-1029, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28696187

RESUMEN

DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Neisseria meningitidis/metabolismo , Transformación Bacteriana , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Neisseria meningitidis/química , Neisseria meningitidis/genética , Alineación de Secuencia
6.
PLoS One ; 11(10): e0164588, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736945

RESUMEN

Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.


Asunto(s)
Clonación Molecular/métodos , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Neisseria meningitidis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Dominio Catalítico , Secuencia Conservada , ADN Helicasas/química , Reparación del ADN , Replicación del ADN , Modelos Moleculares , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , Transformación Bacteriana
7.
PLoS One ; 10(8): e0134954, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26248334

RESUMEN

Expression of type IV pili (Tfp), filamentous appendages emanating from the bacterial surface, is indispensable for efficient neisserial transformation. Tfp pass through the secretin pore consisting of the membrane protein PilQ. PilG is a polytopic membrane protein, conserved in Gram-positive and Gram-negative bacteria, that is required for the biogenesis of neisserial Tfp. PilG null mutants are devoid of pili and non-competent for transformation. Here, recombinant full-length, truncated and mutated variants of meningococcal PilG were overexpressed, purified and characterized. We report that meningococcal PilG directly binds DNA in vitro, detected by both an electromobility shift analysis and a solid phase overlay assay. PilG DNA binding activity was independent of the presence of the consensus DNA uptake sequence. PilG-mediated DNA binding affinity was mapped to the N-terminus and was inactivated by mutation of residues 43 to 45. Notably, reduced meningococcal transformation of DNA in vivo was observed when PilG residues 43 to 45 were substituted by alanine in situ, defining a biologically significant DNA binding domain. N-terminal PilG also interacted with the N-terminal region of PilQ, which previously was shown to bind DNA. Collectively, these data suggest that PilG and PilQ in concert bind DNA during Tfp-mediated transformation.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Neisseria meningitidis/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , ADN Bacteriano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/química , Fimbrias Bacterianas/genética , Expresión Génica , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neisseria meningitidis/genética , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformación Bacteriana
8.
Microbiology (Reading) ; 160(Pt 1): 217-227, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24169816

RESUMEN

RecG is a helicase that is conserved in nearly all bacterial species. The prototypical Escherichia coli RecG promotes regression of stalled replication forks, participates in DNA recombination and DNA repair, and prevents aberrant replication. Mycobacterium tuberculosis RecG (RecGMtb) is a DNA-dependent ATPase that unwinds a variety of DNA substrates, although its preferred substrate is a Holliday junction. Here, we performed site-directed mutagenesis of selected residues in the wedge domain and motifs Q, I, Ib and VI of RecGMtb. Three of the 10 substitution mutations engineered were detected previously as naturally occurring SNPs in the gene encoding RecGMtb. Alanine substitution mutations at residues Q292, F286, K321 and R627 abolished the RecGMtb unwinding activity, whilst RecGMtb F99A, P285S and T408A mutants exhibited ~25-50 % lower unwinding activity than WT. We also found that RecGMtb bound ATP in the absence of a DNA cofactor.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , Mutación Missense , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Alineación de Secuencia
9.
Microbiology (Reading) ; 158(Pt 8): 1982-1993, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22628485

RESUMEN

The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecG(Mtb)) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecG(Mtb) preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecG(Mtb) helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg(2+), Mn(2+), Cu(2+) or Fe(2+). Like its Escherichia coli orthologue, RecG(Mtb) is also a strictly DNA-dependent ATPase.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , ADN Cruciforme/metabolismo , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/genética , ADN Helicasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Cruciforme/química , ADN Cruciforme/genética , Cinética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Especificidad por Sustrato
10.
PLoS One ; 7(5): e36960, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615856

RESUMEN

XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis/genética , Especificidad por Sustrato/genética , Adenosina Trifosfatasas/metabolismo , Daño del ADN/genética , Reparación del ADN , Replicación del ADN/genética , ADN Bacteriano/genética , Mycobacterium tuberculosis/metabolismo , Estructura Terciaria de Proteína/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética/genética
11.
Microbiology (Reading) ; 155(Pt 3): 852-862, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19246756

RESUMEN

Neisseria meningitidis, a causative agent of meningitis and septicaemia, expresses type IV pili, a feature correlating with the uptake of exogenous DNA from the environment by natural transformation. The outer membrane complex PilQ, through which pili are extruded and retracted, has previously been shown to bind DNA in its pore region. In order to further elucidate how DNA is transported across the membranes, we searched for DNA binding proteins within the meningococcal inner membrane. Inner membrane fractions from a panel of neisserial strains were subjected to a solid-phase overlay assay with DNA substrates, and MS was subsequently employed to identify proteins that bind DNA. A number of DNA binding components were detected, including the pilus biogenesis component PilG, the competence protein ComL, and the cell division ATP-binding protein FtsE, as well as two hypothetical proteins. The DNA binding activity of these components was not dependent on the presence of the neisserial DNA uptake sequence. Null mutants, corresponding to each of the proteins identified, were constructed to assess their phenotypes. Only mutants defective in pilus biogenesis were non-competent and non-piliated. The DNA binding activity of the pilus biogenesis components PilQ and PilG and the phenotypes of their respective null mutants suggest that these proteins are directly involved as players in natural transformation, and not only indirectly, through pilus biogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fimbrias/metabolismo , Neisseria meningitidis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas Fimbrias/genética , Proteínas Fimbrias/aislamiento & purificación , Fimbrias Bacterianas/metabolismo , Mutación , Neisseria meningitidis/genética , Unión Proteica , Transformación Bacteriana
12.
BMC Microbiol ; 9: 7, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19134198

RESUMEN

BACKGROUND: Neisseria meningitidis, the causative agent of meningococcal disease, is exposed to high levels of reactive oxygen species inside its exclusive human host. The DNA glycosylase Fpg of the base excision repair pathway (BER) is a central player in the correction of oxidative DNA damage. This study aimed at characterizing the meningococcal Fpg and its role in DNA repair. RESULTS: The deduced N. meningitidis Fpg amino acid sequence was highly homologous to other Fpg orthologues, with particularly high conservation of functional domains. As for most N. meningitidis DNA repair genes, the fpg gene contained a DNA uptake sequence mediating efficient transformation of DNA. The recombinant N. meningitidis Fpg protein was over-expressed, purified to homogeneity and assessed for enzymatic activity. N. meningitidis Fpg was found to remove 2,6-diamino-4-hydroxy-5-formamidopyrimidine (faPy) lesions and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8oxoG) opposite of C, T and G and to a lesser extent opposite of A. Moreover, the N. meningitidis fpg single mutant was only slightly affected in terms of an increase in the frequency of phase variation as compared to a mismatch repair mutant. CONCLUSION: Collectively, these findings show that meningococcal Fpg functions are similar to those of prototype Fpg orthologues in other bacterial species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Neisseria meningitidis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , ADN-Formamidopirimidina Glicosilasa/química , ADN-Formamidopirimidina Glicosilasa/genética , ADN-Formamidopirimidina Glicosilasa/aislamiento & purificación , Neisseria meningitidis/química , Neisseria meningitidis/genética , Estructura Terciaria de Proteína
13.
J Bacteriol ; 189(15): 5716-27, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17526700

RESUMEN

Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Proteínas de la Membrana/metabolismo , Neisseria meningitidis/fisiología , Mapeo de Interacción de Proteínas , Proteínas Bacterianas/química , Proteínas Fimbrias/química , Prueba de Complementación Genética , Lipoproteínas/metabolismo , Microscopía Electrónica de Transmisión , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Secretina/metabolismo , Transcripción Genética
14.
J Mol Biol ; 364(2): 186-95, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17007878

RESUMEN

Type IV pili are long, thin fibres, which extend from the surface of the bacterial pathogen Neisseria meningitidis; they play a key role in adhesion and colonisation of host cells. PilP is a lipoprotein, suggested to be involved in the assembly and stabilization of an outer membrane protein, PilQ, which is required for pilus formation. Here we describe the expression of a recombinant fragment of PilP, spanning residues 20 to 181, and determination of the solution structure of a folded domain, spanning residues 85 to 163, by NMR. The N-terminal third of the protein, from residues 20 to 84, is apparently unfolded. Protease digestion yielded a 113 residue fragment that contained the folded domain. The domain adopts a simple beta-sandwich type fold, consisting of a three-stranded beta-sheet packed against a four-stranded beta-sheet. There is also a short segment of 3(10) helix at the N-terminal part of the folded domain. We were unable to identify any other proteins that are closely related in structure to the PilP domain, although the fold appears to be distantly related to the lipocalin family. Over 40 homologues of PilP have been identified in Gram-negative bacteria and the majority of conserved residues lie within the folded domain. The fourth beta-strand and adjacent loop regions contain a high proportion of conserved residues, including three glycine residues, which seem to play a role in linking the two beta-sheets. The two beta-sheets pack together to form a crevice, lined with conserved hydrophobic residues: we suggest that this feature could act as a binding site for a small ligand. The results show that PilP and its homologues have a conserved, folded domain at the C-terminal end of the protein that may be involved in mediating binding to hydrophobic ligands.


Asunto(s)
Proteínas Fimbrias/química , Lipoproteínas/química , Modelos Moleculares , Neisseria meningitidis/química , Secuencia de Aminoácidos , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...