Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065187

RESUMEN

We report on the realization of a hemispherical optical cavity with a finesse of F = 13 000 and sustaining inter-cavity powers of 10 kW, which we operate in a closed-cycle cryostat vacuum system close to 4 K. This was designed and built with an integrated radio-frequency Paul trap in order to combine optical and radio-frequency trapping. The cavity provides a power build-up factor of 2300. We describe a number of aspects of the system's design and operation, including low-vibration mounting and locking and thermal effects at high powers. Thermal self-locking in the high intracavity power regime was observed to enhance passive stability below 1 kHz. Observations made over repeated cool-downs over the course of a year show a repeatable shift between the ion trap center and the cavity mode.

2.
Phys Rev Lett ; 130(13): 133201, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067320

RESUMEN

Using a single calcium ion confined in a surface-electrode trap, we study the interaction of electric quadrupole transitions with a passively phase-stable optical standing wave field sourced by photonics integrated within the trap. We characterize the optical fields through spatial mapping of the Rabi frequencies of both carrier and motional sideband transitions as well as ac Stark shifts. Our measurements demonstrate the ability to engineer favorable combinations of sideband and carrier Rabi frequency as well as ac Stark shifts for specific tasks in quantum state control and metrology.

4.
Phys Rev Lett ; 125(23): 233602, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337189

RESUMEN

The Dicke model, which describes the coupling of an ensemble of spins to a harmonic oscillator, is known for its superradiant phase transition, which can both be observed in the ground state in a purely Hamiltonian setting, as well as in the steady state of an open-system Dicke model with dissipation. We demonstrate that, in addition, the dissipative Dicke model can undergo a second phase transition to a nonstationary phase, characterized by unlimited heating of the harmonic oscillator. Identifying the mechanism of the phase transition and deriving the scaling of the critical coupling with the system size we conclude that the novel phase transition can be understood as a cooperative breakdown of the oscillator blockade which otherwise prevents higher excitation of the system. We discuss an implementation with trapped ions and investigate the role of cooling, by which the breakdown can be suppressed.

5.
Nature ; 586(7830): 533-537, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087915

RESUMEN

Practical and useful quantum information processing requires substantial improvements with respect to current systems, both in the error rates of basic operations and in scale. The fundamental qualities of individual trapped-ion1 qubits are promising for long-term systems2, but the optics involved in their precise control are a barrier to scaling3. Planar-fabricated optics integrated within ion-trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions4. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, which are often the limiting elements in building up the precise, large-scale entanglement that is essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam-pointing drifts. This allows us to perform ground-state laser cooling of ion motion and to implement gates generating two-ion entangled states with fidelities greater than 99.3(2) per cent. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors5. Similar devices may also find applications in atom- and ion-based quantum sensing and timekeeping6.

6.
Phys Rev Lett ; 116(8): 080502, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26967401

RESUMEN

We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

7.
Nature ; 521(7552): 336-9, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25993964

RESUMEN

Mesoscopic superpositions of distinguishable coherent states provide an analogue of the 'Schrödinger's cat' thought experiment. For mechanical oscillators these have primarily been realized using coherent wavepackets, for which the distinguishability arises as a result of the spatial separation of the superposed states. Here we demonstrate superpositions composed of squeezed wavepackets, which we generate by applying an internal-state-dependent force to a single trapped ion initialized in a squeezed vacuum state with nine decibel reduction in the quadrature variance. This allows us to characterize the initial squeezed wavepacket by monitoring the onset of spin-motion entanglement, and to verify the evolution of the number states of the oscillator as a function of the duration of the force. In both cases we observe clear differences between displacements aligned with the squeezed and anti-squeezed axes. We observe coherent revivals when inverting the state-dependent force after separating the wavepackets by more than 19 times the ground-state root mean squared extent, which corresponds to 56 times the root mean squared extent of the squeezed wavepacket along the displacement direction. Aside from their fundamental nature, these states may be useful for quantum metrology or quantum information processing with continuous variables.

8.
Nat Nanotechnol ; 6(7): 399-400, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21731071
9.
Science ; 325(5945): 1227-30, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19661380

RESUMEN

Large-scale quantum information processors must be able to transport and maintain quantum information and repeatedly perform logical operations. Here, we show a combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions. We quantified the repeatability of a multiple-qubit operation and observed no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of 9Be+ hyperfine states for robust qubit storage, readout, and gates, and simultaneous trapping of 24Mg+ "re-cooling" ions along with the qubit ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA