Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38780780

RESUMEN

PURPOSE: Noncompressible truncal hemorrhage remains a leading cause of preventable death in the prehospital setting. Standardized and reproducible large animal models are essential to test new therapeutic strategies. However, existing injury models vary significantly in consistency and clinical accuracy. This study aims to develop a lethal porcine model to test hemostatic agents targeting noncompressible abdominal hemorrhages. METHODS: We developed a two-hit injury model in Yorkshire swine, consisting of a grade IV liver injury combined with hemodilution. The hemodilution was induced by controlled exsanguination of 30% of the total blood volume and a 3:1 resuscitation with crystalloids. Subsequently, a grade IV liver injury was performed by sharp transection of both median lobes of the liver, resulting in major bleeding and severe hypotension. The abdominal incision was closed within 60 s from the injury. The endpoints included mortality, survival time, serum lab values, and blood loss within the abdomen. RESULTS: This model was lethal in all animals (5/5), with a mean survival time of 24.4 ± 3.8 min. The standardized liver resection was uniform at 14.4 ± 2.1% of the total liver weight. Following the injury, the MAP dropped by 27 ± 8mmHg within the first 10 min. The use of a mixed injury model (i.e., open injury, closed hemorrhage) was instrumental in creating a standardized injury while allowing for a clinically significant hemorrhage. CONCLUSION: This novel highly lethal, consistent, and clinically relevant translational model can be used to test and develop life-saving interventions for massive noncompressible abdominal hemorrhage.

2.
Adv Healthc Mater ; 12(24): e2300688, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37015729

RESUMEN

Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8+ T cell or NK cell-mediated cytotoxicity, while the role of CD4+ T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported. The treatment eliminates subcutaneous MC38 and YUMM1.7 tumors in 70-100% of mice and protected all cured mice against rechallenge. Mechanistic studies reveal a robust TH 1 polarization and suppression of Treg of CD4+ T cells, followed by an effective collaboration of CD4+ T, CD8+ T, and NK cells to eliminate tumors. Finally, the potential to overcome host STING deficiency by significantly decreasing MC38 tumor burden in STING KO mice is demonstrated, addressing the translational challenge for the 19% of human population with loss-of-function STING variants.


Asunto(s)
Neoplasias , Vacunas , Humanos , Neoplasias/tratamiento farmacológico , Linfocitos T CD8-positivos , Células Asesinas Naturales/patología , Vacunas/uso terapéutico , Linfocitos T CD4-Positivos , Inmunoterapia
3.
Adv Healthc Mater ; 12(20): e2202756, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017403

RESUMEN

Primary hemostasis (platelet plug formation) and secondary hemostasis (fibrin clot formation) are intertwined processes that occur upon vascular injury. Researchers have sought to target wounds by leveraging cues specific to these processes, such as using peptides that bind activated platelets or fibrin. While these materials have shown success in various injury models, they are commonly designed for the purpose of treating solely primary or secondary hemostasis. In this work, a two-component system consisting of a targeting component (azide/GRGDS PEG-PLGA nanoparticles) and a crosslinking component (multifunctional DBCO) is developed to treat internal bleeding. The system leverages increased injury accumulation to achieve crosslinking above a critical concentration, addressing both primary and secondary hemostasis by amplifying platelet recruitment and mitigating plasminolysis for greater clot stability. Nanoparticle aggregation is measured to validate concentration-dependent crosslinking, while a 1:3 azide/GRGDS ratio is found to increase platelet recruitment, decrease clot degradation in hemodiluted environments, and decrease complement activation. Finally, this approach significantly increases survival relative to the particle-only control in a liver resection model. In light of prior successes with the particle-only system, these results emphasize the potential of this technology in aiding hemostasis and the importance of a holistic approach in engineering new treatments for hemorrhage.


Asunto(s)
Trombosis , Enfermedades Vasculares , Humanos , Azidas/metabolismo , Hemorragia/tratamiento farmacológico , Hemostasis , Enfermedades Vasculares/metabolismo , Plaquetas/metabolismo , Fibrina
4.
Adv Healthc Mater ; 11(15): e2200905, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670244

RESUMEN

With the advent of bioinformatic tools in efficiently predicting neo-antigens, peptide vaccines have gained tremendous attention in cancer immunotherapy. However, the delivery of peptide vaccines remains a major challenge, primarily due to ineffective transport to lymph nodes and low immunogenicity. Here, a strategy for peptide vaccine delivery is reported by first fusing the peptide to the cytosolic domain of the stimulator of interferon genes protein (STINGΔTM), then complexing the peptide-STINGΔTM protein with STING agonist 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The process results in the formation of self-assembled cGAMP-peptide-STINGΔTM tetramers, which enables efficient lymphatic trafficking of the peptide. Moreover, the cGAMP-STINGΔTM complex acts not only as a protein carrier for the peptide, but also as a potent adjuvant capable of triggering STING signaling independent of endogenous STING protein-an especially important attribute considering that certain cancer cells epigenetically silence their endogenous STING expression. With model antigen SIINFEKL, it is demonstrated that the platform elicits effective STING signaling in vitro, draining lymph node targeting in vivo, effective T cell priming in vivo as well as antitumoral immune response in a mouse colon carcinoma model, providing a versatile solution to the challenges faced in peptide vaccine delivery.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Animales , Proteínas de la Membrana , Ratones , Neoplasias/terapia , Nucleótidos Cíclicos , Péptidos , Vacunas de Subunidad
5.
Biomaterials ; 283: 121432, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245732

RESUMEN

Non-compressible torso hemorrhage (NCTH) is associated with significant mortality in preventable deaths, both in the field and in civilian settings. Current management strategies of these injuries include fluid resuscitation, the use of foaming materials to occlude damaged vessels, and fibrin sealants. Researchers in the field have proposed multiple alternatives to these treatments, such as hemostatic sponges, self-assembling peptide materials, in situ crosslinking hydrogels, and intravenous nanoparticles, which are then challenged in a wide variety of injury models to evaluate their efficacy. This review first discusses the treatment of NCTH in the clinic and field before providing an overview of materials in literature designed for this same purpose, with the intention of summarizing the treatment options and research currently available in this field. The mechanisms of these hemostats, as well as their effectiveness in promoting hemostasis (evaluated through survival, bleeding time, and blood loss volume) are summarized side-by-side for easy comparison across various studies and animal models. Ultimately, a better understanding of existing technologies and the metrics through which they are evaluated may facilitate the development of safer, more effective therapies for non-compressible torso hemorrhage and internal bleeding.


Asunto(s)
Hemorragia , Hemostáticos , Animales , Hemorragia/terapia , Hemostasis , Hemostáticos/uso terapéutico , Hidrogeles , Torso/lesiones
6.
ACS Nano ; 16(2): 2494-2510, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35090344

RESUMEN

Intravenous nanoparticle hemostats offer a potentially attractive approach to promote hemostasis, in particular for inaccessible wounds such as noncompressible torso hemorrhage (NCTH). In this work, particle size was tuned over a range of <100-500 nm, and its effect on nanoparticle-platelet interactions was systematically assessed using in vitro and in vivo experiments. Smaller particles bound a larger percentage of platelets per mass of particle delivered, while larger particles resulted in higher particle accumulation on a surface of platelets and collagen. Intermediate particles led to the greatest platelet content in platelet-nanoparticle aggregates, indicating that they may be able to recruit more platelets to the wound. In biodistribution studies, smaller and intermediate nanoparticles exhibited longer circulation lifetimes, while larger nanoparticles resulted in higher pulmonary accumulation. The particles were then challenged in a 2 h lethal inferior vena cava (IVC) puncture model, where intermediate nanoparticles significantly increased both survival and injury-specific targeting relative to saline and unfunctionalized particle controls. An increase in survival in the second hour was likewise observed in the smaller nanoparticles relative to saline controls, though no significant increase in survival was observed in the larger nanoparticle size. In conjunction with prior in vitro and in vivo experiments, these results suggest that platelet content in aggregates and extended nanoparticle circulation lifetimes are instrumental to enhancing hemostasis. Ultimately, this study elucidates the role of particle size in platelet-particle interactions, which can be a useful tool for engineering the performance of particulate hemostats and improving the design of these materials.


Asunto(s)
Hemostáticos , Nanopartículas , Hemostasis , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Tamaño de la Partícula , Distribución Tisular , Vena Cava Inferior
7.
Bio Protoc ; 11(3): e3905, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33732792

RESUMEN

Activating the STING (stimulator of interferon genes) signaling pathway via administration of STING agonist cyclic GMP-AMP (cGAMP) has shown great promise in cancer immunotherapy. While state-of-the-art approaches have predominantly focused on the encapsulation of cGAMP into liposomes or polymersomes for cellular delivery, we discovered that the recombinant STING protein lacking the transmembrane domain (STINGΔTM) could be used as a functional carrier for cGAMP delivery and elicit type I IFN expression in STING-deficient cell lines. Using this approach, we generated anti-tumoral immunity in mouse melanoma and colon cancer models, providing a potential translatable platform for STING agonist-based immunotherapy. Here, we report the detailed in vitro STING activation protocols with cGAMP-STINGΔTM complex to assist researchers in further development of this approach. This protocol can also be easily expanded to other applications related to STING activation, such as control of various types of infections.

8.
Sci Adv ; 6(24): eaba7589, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582856

RESUMEN

The stimulator of interferon (IFN) genes (STING) pathway constitutes a highly important part of immune responses against various cancers and infections. Consequently, administration of STING agonists such as cyclic GMP-AMP (cGAMP) has been identified as a promising approach to target these diseases. In cancer cells, STING signaling is frequently impaired by epigenetic silencing of STING; hence, conventional delivery of only its agonist cGAMP may be insufficient to trigger STING signaling. In this work, while expression of STING lacking the transmembrane (TM) domain is known to be unresponsive to STING agonists and is dominant negative when coexpressed with the full-length STING inside cells, we observed that the recombinant TM-deficient STING protein complexed with cGAMP could effectively trigger STING signaling when delivered in vitro and in vivo, including in STING-deficient cell lines. Thus, this bioinspired method using TM-deficient STING may present a universally applicable platform for cGAMP delivery.


Asunto(s)
Nucleótidos Cíclicos , Transducción de Señal , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo
9.
ACS Biomater Sci Eng ; 5(5): 2563-2576, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33405762

RESUMEN

Internal bleeding is an injury that can be difficult to localize and effectively treat without invasive surgeries. Injectable polymeric nanoparticles have been developed that can reduce clotting times and blood loss, but they have yet to incorporate sufficient diagnostic capabilities to assist in identifying bleeding sources. Herein, polymeric nanoparticles were developed to simultaneously treat internal bleeding while incorporating tracers for visualization of the nanoparticles by standard clinical imaging modalities. Addition of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiD; a fluorescent dye), biotin functionality, and gold nanoparticles to hemostatic polymeric nanoparticles resulted in nanoparticles amenable to imaging with near-infrared (NIR) imaging, immunohistochemistry, and X-ray computed tomography (CT), respectively. Following a lethal liver resection injury, visualization of accumulated nanoparticles by multiple imaging methods was achieved in rodents, with the highest accumulation observed at the liver injury site, resulting in improved survival rates. Tracer addition to therapeutic nanoparticles allows for an expansion of their applicability, during stabilization by first responders to diagnosis and identification of unknown internal bleeding sites by clinicians using standard clinical imaging modalities.

10.
ACS Nano ; 12(10): 10272-10280, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30272942

RESUMEN

The utility of layer-by-layer (LbL) coated microneedle (MN) skin patches for transdermal drug delivery has proven to be a promising approach, with advantages over hypodermal injection due to painless and easy self-administration. However, the long epidermal application time required for drug implantation by existing LbL MN strategies (15-90 min) can lead to potential medication noncompliance. Here, we developed a MN platform to shorten the application time in MN therapies based on a synthetic pH-induced charge-invertible polymer poly(2-(diisopropylamino) ethyl methacrylate- b-methacrylic acid) (PDM), requiring only 1 min skin insertion time to implant LbL films in vivo. Following MN-mediated delivery of 0.5 µg model antigen chicken ovalbumin (OVA) in the skin of mice, this system achieved sustained release over 3 days and led to an elevated immune response as demonstrated by significantly higher humoral immunity compared with OVA administration via conventional routes (subcutaneously and intramuscularly). Moreover, in an ex vivo experiment on human skin, we achieved efficient immune activation through MN-delivered LbL films, demonstrated by a rapid uptake of vaccine adjuvants by the antigen presenting cells. These features, rapid administration and the ability to elicit a robust immune response, can potentially enable a broad application of microneedle-based vaccination technologies.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Agujas , Oligodesoxirribonucleótidos/farmacología , Ácidos Polimetacrílicos/síntesis química , Receptor de Muerte Celular Programada 1/inmunología , Piel/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Administración Cutánea , Animales , Pollos , Sistemas de Liberación de Medicamentos , Femenino , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/administración & dosificación , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Ácidos Polimetacrílicos/química , Piel/inmunología , Vacunación
11.
Angew Chem Int Ed Engl ; 56(44): 13709-13712, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28925033

RESUMEN

Messenger RNA (mRNA) represents a promising class of nucleic acid drugs. Although numerous carriers have been developed for mRNA delivery, the inefficient mRNA expression inside cells remains a major challenge. Inspired by the dependence of mRNA on 3'-terminal polyadenosine nucleotides (poly A) and poly A binding proteins (PABPs) for optimal expression, we complexed synthetic mRNA containing a poly A tail with PABPs in a stoichiometric manner and stabilized the ribonucleoproteins (RNPs) with a family of polypeptides bearing different arrangements of cationic side groups. We found that the molecular structure of these polypeptides modulates the degree of PABP-mediated enhancement of mRNA expression. This strategy elicits an up to 20-fold increase in mRNA expression in vitro and an approximately fourfold increase in mice. These findings suggest a set of new design principles for gene delivery by the synergistic co-assembly of mRNA with helper proteins.


Asunto(s)
Péptidos/química , Poli A/química , Proteínas de Unión a Poli(A)/química , Poliaminas/química , ARN Mensajero/administración & dosificación , Transfección/métodos , Animales , Expresión Génica , Células HEK293 , Humanos , Ratones , ARN Mensajero/química , ARN Mensajero/genética , Transgenes
12.
ACS Macro Lett ; 6(11): 1320-1324, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650790

RESUMEN

A broad range of biomaterials coatings and thin film drug delivery systems require a strategy for the immobilization, retention, and release of coatings from surfaces such as patches, inserts, and microneedles under physiological conditions. Here we report a polymer designed to provide a dynamic surface, one that first functions as a platform for electrostatic thin film assembly and releases the film once in an in vivo environment. Atom transfer radical polymerization (ATRP) was used to synthesize this polymer poly(o-nitrobenzyl-methacrylate-co-hydroxyethyl-methacrylate-co-poly(ethylene-glycol)-methacrylate) (PNHP), embedded beneath multilayered polyelectrolyte films. Such a base layer is designed to photochemically pattern negative charge onto a solid substrate, assist deposition of smooth layer-by-layer (LbL) polyelectrolyte in mildly acidic buffers and rapidly dissolve at physiological pH, thus lifting off the LbL films. To explore potential uses in the biomedical field, a lysozyme (Lys)/poly(acrylic acid) (PAA) multilayer film was developed on PNHP-coated silicon wafers to construct prototype antimicrobial shunts. Film thickness was shown to grow exponentially with increasing deposition cycles, and effective drug loading and in vitro release was confirmed by the dose-dependent inhibition of Escherichia coli (E. coli) growth. The efficacy of this approach is further demonstrated in LbL-coated microscale needle arrays ultimately of interest for vaccine applications. Using PNHP as a photoresist, LbL films were confined to the tips of the microneedles, which circumvented drug waste at the patch base. Subsequent confocal images confirmed rapid LbL film implantation of PNHP at microneedle penetration sites on mouse skin. Furthermore, in human skin biopsies, we achieved efficient immune activation demonstrated by a rapid uptake of vaccine adjuvant from microneedle-delivered PNHP LbL film in up to 37% of antigen-presenting cells (APC), providing an unprecedented LbL microneedle platform for human vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...