Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4457, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796451

RESUMEN

Coating building envelopes with a passive daytime radiative cooling (PDRC) material has attracted enormous attention as an alternative cooling technique with minimal energy consumption and carbon footprint. Despite the exceptional performance and scalability of porous polymer coating (PPC), achieving consistent performance over a wide range of drying environments remains a major challenge for its commercialization as a radiative cooling paint. Herein, we demonstrate the humidity vulnerability of PPC during the drying process and propose a simple strategy to greatly mitigate the issue. Specifically, we find that the solar reflectance of the PPC rapidly decreases with increasing humidity from 30% RH, and the PPC completely losses its PDRC ability at 45% RH and even become a solar-heating material at higher humidity. However, by adding a small amount of polymer reinforcement to the PPC, it maintains its PDRC performance up to 60% RH, resulting in a 950% increase in estimated areal coverage compared to PPC in the United States. This study sheds light on a crucial consistency issue that has thus far been rarely addressed, and offers engineering guidance to handle this fundamental threat to the development of dependable PDRC paint for industrial applications.

2.
Struct Dyn ; 10(4): 044302, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577135

RESUMEN

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 µm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 µm. This suggests that precise temperature control and clean deposition conditions allow µm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.

3.
Opt Express ; 30(3): 3443-3454, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209602

RESUMEN

Controlling the line shape of Fano resonance has continued to attract significant research attention in recent years owing to its practical applications such as lasing, biosensing, and slow-light devices. However, controllable Fano resonances always require stringent alignment of complex symmetry-breaking structures; therefore, the manipulation can only be performed with limited degrees of freedom and a narrow tuning range. This work demonstrates dark-mode excitation tuning independent of the bright mode for the first time, to the authors' knowledge, in asymmetric Fano metamaterials. Metallic subwavelength slits are arranged to form asymmetric unit cells and generate a broad and bright (radiative) Fabry-Perot mode and a sharp and dark (non-radiative) surface mode. The introduction of the independent radial and angular asymmetries realizes independent control of the Fano phase (q) and quality factor (Q). This tunability provides a dynamic phase shift while maintaining a high-quality factor, enabling switching between nearly perfect transmission and absorption, which is confirmed both numerically and experimentally. The proposed scheme for fully controlled Fano systems can aid practical applications such as phase-sensitive switching devices.

4.
Rev Sci Instrum ; 91(11): 113306, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261443

RESUMEN

Versatile high-power pulsed electron-beam accelerators that meet the requirements of pulsed high-power specifications are needed for appropriate applications in medical industry, defense, and other industries. The pulsed electron beam accelerator comprising a Marx generator and Blumlein pulse forming line (PFL) is designed to accelerate the electron beams at the level of 1 MeV when electrostatically discharging. The performance specifications of Marx generators consisting of a 100 kV DC power supply, R-L-C circuit, and high voltage switch are at a maximum 800 kV. At this time, by using the capacitance mismatching principle between the Marx generator and the Blumlein PFL under the law of preserving the amount of charge, it is possible to generate a high voltage in the form of a square pulse up to about 1.1 MV, as much as 1.37 times the charged voltage of the Marx generator. As a result, energy transmission from the Marx generator with a high efficiency of about 85% to the Blumlein PFL is possible. The aim of this study is that the pulsed high-power electron-beam accelerator can be used to change the diode impedance, and the energy of the accelerated electron beam reaches a level of 1 MeV with the square pulse width of about 100 ns at the flat-top in the range of relativistic electron beam generation. Performance tests were securely carried out by installing a dummy load based on CuSO4 solution varying the diode impedance to deter damage to the circuit by preventing reflected waves from being generated in the load.

5.
Proc Natl Acad Sci U S A ; 117(50): 31665-31673, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257543

RESUMEN

Fingerprints are unique to primates and koalas but what advantages do these features of our hands and feet provide us compared with the smooth pads of carnivorans, e.g., feline or ursine species? It has been argued that the epidermal ridges on finger pads decrease friction when in contact with smooth surfaces, promote interlocking with rough surfaces, channel excess water, prevent blistering, and enhance tactile sensitivity. Here, we found that they were at the origin of a moisture-regulating mechanism, which ensures an optimal hydration of the keratin layer of the skin for maximizing the friction and reducing the probability of catastrophic slip due to the hydrodynamic formation of a fluid layer. When in contact with impermeable surfaces, the occlusion of the sweat from the pores in the ridges promotes plasticization of the skin, dramatically increasing friction. Occlusion and external moisture could cause an excess of water that would defeat the natural hydration balance. However, we have demonstrated using femtosecond laser-based polarization-tunable terahertz wave spectroscopic imaging and infrared optical coherence tomography that the moisture regulation may be explained by a combination of a microfluidic capillary evaporation mechanism and a sweat pore blocking mechanism. This results in maintaining an optimal amount of moisture in the furrows that maximizes the friction irrespective of whether a finger pad is initially wet or dry. Thus, abundant low-flow sweat glands and epidermal furrows have provided primates with the evolutionary advantage in dry and wet conditions of manipulative and locomotive abilities not available to other animals.


Asunto(s)
Dedos/anatomía & histología , Fuerza de la Mano/fisiología , Locomoción/fisiología , Actividad Motora/fisiología , Primates/fisiología , Adulto , Animales , Evolución Biológica , Dermatoglifia , Dedos/diagnóstico por imagen , Dedos/fisiología , Fricción , Humanos , Masculino , Microfluídica , Sudor/química , Sudor/metabolismo , Glándulas Sudoríparas/química , Glándulas Sudoríparas/metabolismo , Tomografía de Coherencia Óptica
6.
mSphere ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28317026

RESUMEN

Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction-a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite.

7.
mSphere ; 2(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28251183

RESUMEN

The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCEToxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.

8.
Rev Sci Instrum ; 88(1): 014704, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147680

RESUMEN

Non-thermal irreversible electroporation (NTIRE) to avoid thermal damage to cells during intense DC ns pulsed electric fields (nsPEFs) is a recent modality for medical applications. This mechanism, related to bioelectrical dynamics of the cell, is linked to the effect of a DC electric field and a threshold effect with an electrically stimulated membrane for the charge distribution in the cell. To create the NTIRE condition, the pulse width of the nsPEF should be shorter than the charging time constant of the membrane related to the cell radius, membrane capacitance, cytoplasm resistivity, and medium resistivity. It is necessary to design and fabricate a very intense nanosecond DC electric field pulser that is capable of producing voltages up to the level of 100 kV/cm with an artificial pulse width (∼ns) with controllable repetition rates. Many devices to generate intense DC nsPEF using various pulse-forming line technologies have been introduced thus far. However, the previous Blumlein pulse-generating devices are clearly inefficient due to the energy loss between the input voltage and the output voltage. An improved two-stage stacked Blumlein pulse-forming line can overcome this limitation and decrease the energy loss from a DC power supply. A metal oxide silicon field-effect transistor switch with a fast rise and fall time would enable a high repetition rate (max. 100 kHz) and good endurance against very high voltages (DC ∼ 30 kV). The load is designed to match the sample for exposure to cell suspensions consisting of a 200 Ω resistor matched with a Blumlein circuit and two electrodes without the characteristic RC time effect of the circuit (capacitance =0.174 pF).

9.
Anal Biochem ; 492: 8-12, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26399556

RESUMEN

Recent advances in automated cell counters enable us to count cells more easily with consistency. However, the wide use of the traditional vital dye trypan blue (TB) raises environmental and health concerns due to its potential teratogenic effects. To avoid this chemical hazard, it is of importance to introduce an alternative non-hazardous vital dye that is compatible with automated cell counters. Erythrosin B (EB) is a vital dye that is impermeable to biological membranes and is used as a food additive. Similarly to TB, EB stains only nonviable cells with disintegrated membranes. However, EB is less popular than TB and is seldom used with automated cell counters. We found that cell counting accuracy with EB was comparable to that with TB. EB was found to be an effective dye for accurate counting of cells with different viabilities across three different automated cell counters. In contrast to TB, EB was less toxic to cultured HL-60 cells during the cell counting process. These results indicate that replacing TB with EB for use with automated cell counters will significantly reduce the hazardous risk while producing comparable results.


Asunto(s)
Recuento de Células/métodos , Colorantes/química , Eritrosina/química , Automatización , Supervivencia Celular/efectos de los fármacos , Colorantes/toxicidad , Eritrosina/toxicidad , Células HL-60 , Humanos , Azul de Tripano/química
10.
Biol Proced Online ; 15(1): 13, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24215650

RESUMEN

BACKGROUND: The faithful determination of the concentration and viability of yeast cells is important for biological research as well as industry. To this end, it is important to develop an automated cell counting algorithm that can provide not only fast but also accurate and precise measurement of yeast cells. RESULTS: With the proposed method, we measured the precision of yeast cell measurements by using 0%, 25%, 50%, 75% and 100% viability samples. As a result, the actual viability measured with the proposed yeast cell counting algorithm is significantly correlated to the theoretical viability (R2 = 0.9991). Furthermore, we evaluated the performance of our algorithm in various computing platforms. The results showed that the proposed algorithm could be feasible to use with low-end computing platforms without loss of its performance. CONCLUSIONS: Our yeast cell counting algorithm can rapidly provide the total number and the viability of yeast cells with exceptional accuracy and precision. Therefore, we believe that our method can become beneficial for a wide variety of academic field and industries such as biotechnology, pharmaceutical and alcohol production.

11.
FEBS Lett ; 585(3): 561-6, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21237164

RESUMEN

Substantial evidence implicates that the aggregation of α-synuclein (αSyn) is a critical factor in the pathogenesis of Parkinson's disease. This study focuses on the role of αSyn C-terminus. We introduced two additional cysteine residues at positions 107 and 124 (A107C and A124C) to our previous construct. Five X-isomers of oxidative-folded mutation of α-synuclein with three disulfides were isolated and their secondary structures and aggregating features were analyzed. All isomers showed similar random coil structures as wild-type α-synuclein. However, these isomers did not form aggregates or fibrils, even with prolonged incubation, suggesting that the interactions between the C-terminal and N-terminal or central NAC region are important in maintaining the natively unfolded structure of αSyn and thus prevent αSyn from changing conformation, which is a critical step for fibrillation.


Asunto(s)
Cistina/química , alfa-Sinucleína/química , Benzotiazoles , Dicroismo Circular , Cisteína/química , Colorantes Fluorescentes/química , Humanos , Isomerismo , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Oxidación-Reducción , Enfermedad de Parkinson/fisiopatología , Desnaturalización Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Espectrometría de Fluorescencia , Tiazoles/química , alfa-Sinucleína/genética
12.
Protein Pept Lett ; 18(3): 230-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20858207

RESUMEN

Under certain in vitro conditions, α-Synuclein is an abundant 14 kDa presynaptic intrinsically disordered protein, involved in the pathogenesis of Parkinson's disease (PD) forms amyloid fibrils which resemble those found in Lewy bodies of PD patients. However, a substantial fraction of α-synuclein molecules (10-20 %) does not form fibrils during fibrillation and exists in a form of soluble oligomers. In this study, we examined these soluble oligomers by a variety of biophysical techniques including atomic force microscopy (AFM), circular dichroism, Fourier-transform infrared spectroscopy and thioflavin T fluorescence. We observed that the fibrillation kinetics is affected by the variation in salt and protein concentrations. Although both high salt and high protein concentrations noticeably accelerated α-synuclein fibrillation, the amount of non-fibrillar oligomers is independent of the salt content. The oligomers formed at low salt concentration adopt more ß-sheet structure and are smaller in size than those formed at high salt concentration. AFM analysis shows that the low salt oligomers represent a mixture of small oligomers and some amorphous aggregates, whereas oligomers formed at high salt concentrations are noticeably larger, more homogenous, and are mostly spherical in shape. All the late stage non-fibrillar oligomers do not form fibrils even when seeded with pre-formed fibrils, are characterized by negligible rates of dissociation, likely due to their intertwined structure, and are able to disrupt the integrity of the biological membrane. These findings suggest that these soluble oligomers are important players in the multi-pathway aggregation of α-synuclein and should be taken into account in studies on the molecular mechanisms of this protein fibrillation.


Asunto(s)
Multimerización de Proteína , alfa-Sinucleína/química , Benzotiazoles , Membrana Celular/química , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Cinética , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Sales (Química)/farmacología , Solubilidad , Tiazoles/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , alfa-Sinucleína/metabolismo
13.
J Mol Biol ; 388(3): 597-610, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19328209

RESUMEN

Several studies have shown that catecholamines can inhibit the fibrillation of alpha-synuclein (alpha-Syn), a small presynaptic protein whose aggregation is believed to be a critical step in the etiology of Parkinson's disease and several other neurodegenerative disorders. However, the mechanism of this inhibition is uncertain. We show here that substoichiometric concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a normal product of the metabolism of dopamine, can inhibit the fibrillation of alpha-Syn, due to non-covalent binding of DOPAC to alpha-Syn monomer. Intriguingly, the presence of alpha-Syn accelerates the spontaneous oxidation of DOPAC, and the oxidized form of DOPAC (the quinone) is responsible for the fibrillation inhibition. In addition, the presence of DOPAC leads to the oxidation of the methionine residues of alpha-Syn, probably due to the H(2)O(2) production as a by-product of DOPAC oxidation. The lack of fibrillation results from the formation of stable oligomers, which are very similar to those observed transiently at early stages of the alpha-Syn fibrillation. A possible explanation for this phenomenon is that DOPAC stabilizes the normally transient oligomers and prevents them from subsequent fibril formation. The analysis of the alpha-Syn Y39W variant suggests that DOPAC binds non-covalently to the same N-terminal region of alpha-Syn as lipid vesicles, probably in the vicinity of residue 39. In contrast to the compounds with 1,2-dihydroxyphenyl groups (DOPAC and catechol), their 1,4-dihydroxyphenyl isomers (hydroquinone and homogentisic acid) are able to modify alpha-Syn covalently, probably due to the less steric hindrance in the Michael addition.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético/metabolismo , Amiloide/antagonistas & inhibidores , alfa-Sinucleína/metabolismo , Amiloide/ultraestructura , Catecoles/metabolismo , Ácido Homogentísico/metabolismo , Hidroquinonas/metabolismo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Unión Proteica
14.
Biochim Biophys Acta ; 1794(2): 282-90, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19013262

RESUMEN

alpha-synuclein is a small presynaptic protein (14,460 D) that is abundantly distributed in the brain. Although, its function is unknown, the aggregated form of alpha-synuclein is a pathological hallmark of several neurodegenerative diseases, including Parkinson's disease (PD). Epidemiological studies have shown that smoking can lessen the incidence of Parkinson's disease, indicating that smoke may contain chemicals that are neuro-protective. The fibrillation of alpha-synuclein was studied in relation to five different compounds found in cigarette smoke: anabasine, cotinine, hydroquinone, nicotine and nornicotine. Thioflavin T assays, gel electrophoresis, size exclusion chromatography-high performance liquid chromatography (SEC-HPLC) and atomic force microscopy (AFM) were utilized to monitor the rate of alpha-synuclein fibrillation and the inhibitory effects of the cigarette smoke components. We show that nicotine and hydroquinone inhibit alpha-synuclein fibril formation in a concentration-dependent manner, with nicotine being more effective. The SEC-HPLC data show that nicotine and hydroquinone stabilize soluble oligomers. The morphology of the oligomers stabilized by nicotine was evaluated by AFM, which showed the presence of three stable oligomers with an average height of 16 nm, 10 nm and 4 nm. Comparable results were obtained for the effect of the cigarette smoke components on the A53T mutant fibrillation. These results show that nicotine and hydroquinone inhibit alpha-synuclein fibrillation and stabilize soluble oligomeric forms. This information can be used to understand the molecular mechanism of the nicotine and hydroquinone action to develop therapeutic solutions for PD.


Asunto(s)
Nicotina/farmacología , Enfermedad de Parkinson/metabolismo , Fumar/efectos adversos , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Anabasina/farmacología , Benzotiazoles , Cromatografía en Gel , Cotinina/farmacología , Humanos , Hidroquinonas/farmacología , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Mutación , Nicotina/análogos & derivados , Unión Proteica , Multimerización de Proteína , Tiazoles/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura
15.
J Mol Biol ; 383(1): 214-23, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18775438

RESUMEN

The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-ray scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.


Asunto(s)
alfa-Sinucleína/química , Dicroismo Circular , Estabilidad de Medicamentos , Flavanonas/farmacología , Humanos , Técnicas In Vitro , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Difracción de Rayos X , alfa-Sinucleína/efectos de los fármacos
16.
Biochemistry ; 46(46): 13322-30, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-17963364

RESUMEN

Elucidating the details of the assembly of amyloid fibrils is a key step to understanding the mechanism of amyloid deposition diseases including Parkinson's disease. Although several models have been proposed, based on analyses of polypeptides and short peptides, a detailed understanding of the structure and mechanism of alpha-synuclein fibrillation remains elusive. In this study, we used trypsin and endoproteinase GluC to digest intact alpha-synuclein fibrils and to analyze the detailed morphology of the resultant fibrils/remnants. We also created three mutants of alpha-synuclein, in which the N-terminal and C-terminal regions were removed, both individually and in combination, and investigated the detailed morphology of the fibrils from these mutants. Our results indicate that the assembly of mature alpha-synuclein fibrils is hierarchical: protofilaments --> protofibrils --> mature fibrils. There is a core region of approximately 70 amino acids, from residues approximately 32 to 102, which comprises the beta-rich core of the protofilaments and fibrils. In contrast, the two terminal regions show no evidence of participating in the assembly of the protofilament core but play a key role in the interactions between the protofilaments, which is necessary for the fibril maturation.


Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestructura , Cristalografía , Humanos , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Serina Endopeptidasas/metabolismo , Tripsina/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestructura
17.
Biochemistry ; 45(30): 9342-53, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16866381

RESUMEN

Human insulin, which consists of disulfide cross-linked A and B polypeptide chains, readily forms amyloid fibrils under slightly destabilizing conditions. We examined whether the isolated A and B chain peptides of human insulin would form fibrils at neutral and acidic pH. Although insulin exhibits a pH-dependent lag phase in fibrillation, the A chain formed fibrils without a lag at both pHs. In contrast, the B chain exhibited complex concentration-dependent fibrillation behavior at acidic pH. At higher concentrations, e.g., >0.2 mg/mL, the B chains preferentially and rapidly formed stable protofilaments rather than mature fibrils upon incubation at 37 degrees C. Surprisingly, these protofilaments did not convert into mature fibrils. At lower B chain concentrations, however, mature fibrils were formed. The explanation for the concentration dependence of B chain fibrillation is as follows. The B chains exist as soluble oligomers at acidic pH, have a beta-sheet rich conformation as determined by CD, and bind ANS strongly, and these oligomers rapidly form dead-end protofilaments. However, under conditions in which the B chain monomer is present, such as low B chain concentration (<0.2 mg/mL) or in the presence of low concentrations of GuHCl, which dissociates the soluble oligomers, mature fibrils were formed. Thus, both A and B chain peptides can form amyloid fibrils, and both are likely to be involved in the interactions leading to the fibrillation of intact insulin.


Asunto(s)
Insulina/química , Fragmentos de Péptidos/química , Pliegue de Proteína , Subunidades de Proteína/química , Secuencia de Aminoácidos , Amiloide/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Insulina/genética , Cinética , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/ultraestructura , Subunidades de Proteína/metabolismo
18.
Biochemistry ; 45(8): 2752-60, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16489768

RESUMEN

The aggregation of the presynaptic protein alpha-synuclein is associated with Parkinson's disease (PD). The details of the mechanism of aggregation, as well as the cytotoxic species, are currently not well understood. alpha-Synuclein has four tyrosine and no tryptophan residues. We introduced a tyrosine to tryptophan mutation at position 39 to create an intrinsic fluorescence probe and allow additional characterization of the aggregation process. Y39W alpha-synuclein had similar fibrillation kinetics (2-fold slower), pH-induced conformational changes, and fibril morphology to wild-type alpha-synuclein. In addition to intrinsic Trp fluorescence, acrylamide quenching, fluorescence anisotropy, ANS binding, dynamic light scattering, and FTIR were employed to monitor the kinetics of aggregation. These biophysical probes revealed the significant population of two classes of oligomeric intermediates, one formed during the lag period of fibrillation and the other present at the completion of fibrillation. As expected for a natively unfolded protein, Trp 39 was highly solvent-exposed in the monomer and is solvent-exposed in the two oligomeric intermediates; however, it is partially, but not fully, buried in the fibrils. These observations demonstrate the utility of Trp fluorescence labeled alpha-synuclein and demonstrate the existence of an oligomeric intermediate that exists as a transient reservoir of alpha-synuclein for fibrillation.


Asunto(s)
Fluorescencia , Triptófano/química , alfa-Sinucleína/metabolismo , Acrilamida/metabolismo , Sustitución de Aminoácidos , Amiloide/metabolismo , Naftalenosulfonatos de Anilina/metabolismo , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Estructura Secundaria de Proteína/genética , Solventes , Factores de Tiempo , Triptófano/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
19.
Biochemistry ; 44(50): 16701-9, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16342960

RESUMEN

Insulin is very prone to form amyloid fibrils under slightly destabilizing conditions, and the B-chain region plays a critical role in the fibrillation. We show here that the isolated B-chain peptide of bovine insulin also forms fibrils at both acidic and neutral pH. When a mixture of insulin and the B-chain peptide was incubated at either acidic or neutral pH, the formation of fibrils was clearly separated into two phases, with the faster phase corresponding to the formation of homogeneous fibrils from the B-chain and the slower phase corresponding to homogeneous fibrillation of insulin. To further investigate the interaction (or lack thereof) between the two polypeptides, we examined the effects of cross-seeding. The results indicate that seeds of B-chain fibrils accelerate the fibrillation of insulin at pH 1.6 and inhibit the fibrillation at pH 7.5, but seeds of insulin fibrils have little effect on the fibrillation of the B-chain. We conclude that at pH 7.5 simultaneous independent homologous fibrillation occurs, but at low pH, heterologous fibrillation takes place, and with B-chain seeding of insulin, a unique conformation of fibrils is formed. Our results demonstrate that in the co-aggregation of closely related peptides each peptide species may undergo concurrent homogeneous or heterologous polymerization and that fibrils of one species may or may not seed fibrillation of the other. The results demonstrate the significant "species" barrier in amyloid fibril formation between fibrillation induced by different fibrils. A model for the fibrillation of the heterogeneous system of insulin and B-chain insulin is proposed.


Asunto(s)
Insulina/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Amiloide/química , Animales , Bovinos , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Biol Chem ; 280(52): 42669-75, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16246845

RESUMEN

Insulin has a largely alpha-helical structure and exists as a mixture of hexameric, dimeric, and monomeric states in solution, depending on the conditions: the protein is monomeric in 20% acetic acid. Insulin forms amyloid-like fibrils under a variety of conditions, especially at low pH. In this study we investigated the fibrillation of monomeric human insulin by monitoring changes in CD, attenuated total reflectance-Fourier transform infrared spectroscopy, 8-anilinonaphthalenesulfonic acid fluorescence, thioflavin T fluorescence, dynamic light scattering, and H/D exchange during the initial stages of the fibrillation process to provide insight into early events involving the monomer. The results demonstrate the existence of structural changes occurring before the onset of fibril formation, which are detectable by multiple probes. The data indicate at least two major populations of oligomeric intermediates between the native monomer and fibrils. Both have significantly non-native conformations, and indicate that fibrillation occurs from a beta-rich structure significantly distinct from the native fold.


Asunto(s)
Insulina/química , Ácido Acético/química , Naftalenosulfonatos de Anilina/farmacología , Benzotiazoles , Dicroismo Circular , Colorantes Fluorescentes/farmacología , Humanos , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Cinética , Luz , Espectrometría de Masas , Conformación Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Dispersión de Radiación , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Tiazoles/química , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...