Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2314437121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349882

RESUMEN

Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Muerte Celular , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577462

RESUMEN

Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, particularly polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in B. subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal, and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.

3.
J Bacteriol ; 205(2): e0037022, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651772

RESUMEN

The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.


Asunto(s)
Proteínas Bacterianas , Factores de Transcripción , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Elongación de Péptidos/genética , Aminoácidos/metabolismo , Esporas Bacterianas/genética , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica
4.
Adv Sci (Weinh) ; 9(32): e2203715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192160

RESUMEN

The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.

5.
EMBO Rep ; 22(2): e51790, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33463026

RESUMEN

Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level ß-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that ß-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to ß-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against ß-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.


Asunto(s)
Vibrio cholerae , beta-Lactamas , Animales , Antibacterianos/farmacología , Pared Celular , Ratones , Vibrio cholerae/genética , beta-Lactamas/farmacología
6.
ACS Appl Mater Interfaces ; 10(3): 2490-2495, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29285922

RESUMEN

Owing to unique potential for high color purity luminance based on low-cost solution processes, organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) are attracting a great deal of research attention. For high performance PeLEDs, optimum control of the perovskite film morphology is a critical parameter. Here, we introduce a reliable and well-controllable PeLED crystallization process based on beam-damage-free near-infrared laser (λ = 808 nm) irradiation. Morphology of the CH3NH3PbBr3 films can be precisely controlled by laser irradiation condition parameters: power density and beam scan rate. We systematically investigate the perovskite film morphology and device performance of the PeLEDs under different processing conditions. In the optimum power density and high beam scan rate (30 W cm-2, 0.1 mm s-1), a dense and smooth perovskite film is attained with a small crystal grain size. The critical relationship between the crystal grain size and LED efficiency is established while attaining the device performance of 0.95 cd A-1 efficiency and 1784 cd m-2.

7.
J Biochem ; 158(3): 181-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25814670

RESUMEN

The scaffolding protein Salvador (Sav) plays a key role in the Hippo (Hpo) signalling pathway, which controls tissue growth by inhibiting cell proliferation and promoting apoptosis. Dysregulation of the Hippo pathway contributes to cancer development. Since the identification of the first Sav gene in 2002, very little is known regarding the molecular basis of Sav-SARAH mediating interactions due to its insolubility. In this study, refolding of the first Sav (known as WW45)-SARAH provided insight into the biochemical and biophysical properties, indicating that WW45-SARAH exhibits properties of a disordered protein, when the domain was refolded at a neutral pH. Interestingly, WW45-SARAH shows folded and rigid conformations relative to the decrease in pH. Further, diffracting crystals were obtained from protein refolded under acidic pH, suggesting that the refolded WW45 protein at low pH has a homogeneous and stable conformation. A comparative analysis of molecular properties found that the acidic-stable fold of WW45-SARAH enhances a heterotypic interaction with Mst2-SARAH. In addition, using an Mst2 mutation that disrupts homotypic dimerization, we showed that the monomeric Mst2-SARAH domain could form a stable complex of 1:1 stoichiometric ratio with WW45 refolded under acidic pH.


Asunto(s)
Proteínas de Ciclo Celular/química , Isoantígenos/química , Complejos Multiproteicos/química , Proteínas Serina-Treonina Quinasas/química , Secuencia de Aminoácidos/genética , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Escherichia coli , Vía de Señalización Hippo , Humanos , Isoantígenos/genética , Complejos Multiproteicos/genética , Mutación , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína/genética , Serina-Treonina Quinasa 3 , Transducción de Señal
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1050-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699649

RESUMEN

Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin ß directly and as a DNA-binding domain. Here, a 2.5 Šresolution structure of four ZF domains of Snail1 complexed with importin ß is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin ß in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin ß is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.


Asunto(s)
Factores de Transcripción/química , Dedos de Zinc , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Línea Celular , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...