Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 113966, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507408

RESUMEN

Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1). Our results demonstrate that repeated stimulation leads to a refinement of V1 circuitry by decreasing the number of responsive neurons while potentiating their response. At the synaptic level, we observe a reduction in the number of dendritic spines and an overall increase in spine AMPA receptor levels in the same subset of neurons. In addition, visual stimulation induces synaptic potentiation in neighboring spines within individual dendrites. These findings provide insights into the mechanisms of synaptic plasticity underlying information processing in the neocortex.


Asunto(s)
Espinas Dendríticas , Plasticidad Neuronal , Corteza Visual Primaria , Animales , Plasticidad Neuronal/fisiología , Ratones , Corteza Visual Primaria/fisiología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Receptores AMPA/metabolismo , Estimulación Luminosa , Ratones Endogámicos C57BL , Sinapsis/fisiología , Sinapsis/metabolismo , Neuronas/fisiología , Neuronas/metabolismo , Corteza Visual/fisiología
2.
Science ; 383(6686): eadk1291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422154

RESUMEN

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Asunto(s)
Cognición , Plasticidad Neuronal , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Ratones , Trastorno Autístico/genética , Proteínas Activadoras de GTPasa/genética , Aprendizaje , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Catálisis
3.
Proc Natl Acad Sci U S A ; 120(37): e2308891120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669379

RESUMEN

SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Humanos , Animales , Ratones , Codón sin Sentido , Convulsiones , Encéfalo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Proteínas Activadoras de ras GTPasa
4.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37293116

RESUMEN

SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause SYNGAP1 -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5). Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function (6-11), and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning and memory, and have seizures (9, 12-14). However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A . While reduction in Syngap1 mRNA varies from 30-50% depending on the specific mutation, both models show ∼50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder. Significance Statement: SYNGAP1 is a protein enriched at excitatory synapses in the brain that is an important regulator of synapse structure and function. SYNGAP1 mutations cause SYNGAP1 -related intellectual disability (SRID), a neurodevelopmental disorder with cognitive impairment, social deficits, seizures, and sleep disturbances. To explore how SYNGAP1 mutations found in humans lead to disease, we generated the first knock-in mouse models with causal SRID variants: one with a frameshift mutation and a second with an intronic mutation that creates a cryptic splice acceptor site. Both models show decreased Syngap1 mRNA and Syngap1 protein and recapitulate key features of SRID including hyperactivity and impaired working memory. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies. Highlights: Two mouse models with SYNGAP1 -related intellectual disability (SRID) mutations found in humans were generated: one with a frameshift mutation that results in a premature stop codon and the other with an intronic mutation resulting in a cryptic splice acceptor site and premature stop codon. Both SRID mouse models show 35∼50% reduction in mRNA and ∼50% reduction in Syngap1 protein.Both SRID mouse models display deficits in synaptic plasticity and behavioral phenotypes found in people. RNA-seq confirmed cryptic splice acceptor activity in one SRID mouse model and revealed broad transcriptional changes also identified in Syngap1 +/- mice. Novel SRID mouse models generated here provide a resource and establish a framework for development of future therapeutic intervention.

5.
Elife ; 102021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34658338

RESUMEN

Elucidating how synaptic molecules such as AMPA receptors mediate neuronal communication and tracking their dynamic expression during behavior is crucial to understand cognition and disease, but current technological barriers preclude large-scale exploration of molecular dynamics in vivo. We have developed a suite of innovative methodologies that break through these barriers: a new knockin mouse line with fluorescently tagged endogenous AMPA receptors, two-photon imaging of hundreds of thousands of labeled synapses in behaving mice, and computer vision-based automatic synapse detection. Using these tools, we can longitudinally track how the strength of populations of synapses changes during behavior. We used this approach to generate an unprecedentedly detailed spatiotemporal map of synapses undergoing changes in strength following sensory experience. More generally, these tools can be used as an optical probe capable of measuring functional synapse strength across entire brain areas during any behavioral paradigm, describing complex system-wide changes with molecular precision.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores AMPA/genética , Sinapsis/fisiología , Animales , Femenino , Masculino , Ratones , Receptores AMPA/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508001

RESUMEN

Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.


Asunto(s)
Predominio Ocular , Interneuronas/fisiología , Inhibición Neural , Plasticidad Neuronal , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Corteza Visual/fisiología , Animales , Proteína C-Reactiva/metabolismo , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/citología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Nat Chem Biol ; 17(1): 39-46, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989297

RESUMEN

Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.


Asunto(s)
Técnicas Biosensibles , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Miocitos Cardíacos/enzimología , Neuronas/enzimología , Imagen Óptica/métodos , Alprostadil/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dihidroxifenilalanina/farmacología , Dinoprostona/farmacología , Colorantes Fluorescentes/química , Expresión Génica , Biblioteca de Genes , Genes Reporteros , Péptido 1 Similar al Glucagón/farmacología , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Humanos , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Cultivo Primario de Células , Transducción de Señal
8.
Sci Rep ; 10(1): 18227, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106552

RESUMEN

The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3ß) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3ß inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3ß inhibition by BIO-acetoxime infusion or GSK-3ß knockdown by GSK-3ß shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3ß in the LA. Our findings suggest that GSK-3ß activation is a critical step for ZIP-induced disruption of memory.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Miedo/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Aprendizaje/fisiología , Lipopéptidos/farmacología , Memoria/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Animales , Miedo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Modelos Animales , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
9.
Elife ; 92020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32579114

RESUMEN

SynGAP is a synaptic Ras GTPase-activating protein (GAP) with four C-terminal splice variants: α1, α2, ß, and γ. Although studies have implicated SYNGAP1 in several cognitive disorders, it is not clear which SynGAP isoforms contribute to disease. Here, we demonstrate that SynGAP isoforms exhibit unique spatiotemporal expression patterns and play distinct roles in neuronal and synaptic development in mouse neurons. SynGAP-α1, which undergoes liquid-liquid phase separation with PSD-95, is highly enriched in synapses and is required for LTP. In contrast, SynGAP-ß, which does not bind PSD-95 PDZ domains, is less synaptically targeted and promotes dendritic arborization. A mutation in SynGAP-α1 that disrupts phase separation and synaptic targeting abolishes its ability to regulate plasticity and instead causes it to drive dendritic development like SynGAP-ß. These results demonstrate that distinct intrinsic biochemical properties of SynGAP isoforms determine their function, and individual isoforms may differentially contribute to the pathogenesis of SYNGAP1-related cognitive disorders.


Asunto(s)
Neuronas/fisiología , Proteínas Activadoras de ras GTPasa/metabolismo , Empalme Alternativo , Animales , Embrión de Mamíferos , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Isoformas de Proteínas , Ratas , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Neuron ; 105(5): 895-908.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901303

RESUMEN

Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions.


Asunto(s)
Espinas Dendríticas/metabolismo , Aprendizaje , Actividad Motora , Corteza Motora/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Corteza Visual/metabolismo , Animales , Miembro Anterior , Microscopía Intravital , Ratones , Microscopía Fluorescente , Optogenética , Transporte de Proteínas , Desempeño Psicomotor , Análisis Espacio-Temporal
11.
Neuron ; 96(5): 1084-1098.e7, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29154130

RESUMEN

Regulation of AMPA-type glutamate receptor (AMPAR) number at synapses is a major mechanism for controlling synaptic strength during homeostatic scaling in response to global changes in neural activity. We show that the secreted guidance cue semaphorin 3F (Sema3F) and its neuropilin-2 (Npn-2)/plexinA3 (PlexA3) holoreceptor mediate homeostatic plasticity in cortical neurons. Sema3F-Npn-2/PlexA3 signaling is essential for cell surface AMPAR homeostatic downscaling in response to an increase in neuronal activity, Npn-2 associates with AMPARs, and Sema3F regulates this interaction. Therefore, Sema3F-Npn-2/PlexA3 signaling controls both synapse development and synaptic plasticity.


Asunto(s)
Corteza Cerebral/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropilina-2/fisiología , Receptores AMPA/fisiología , Animales , Bicuculina/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Homeostasis/efectos de los fármacos , Masculino , Proteínas de la Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuropilina-2/efectos de los fármacos , Cultivo Primario de Células , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Sinapsis/fisiología
12.
Cell Rep ; 18(2): 571-582, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076798

RESUMEN

Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases.


Asunto(s)
Cardiomiopatías/terapia , Diferenciación Celular , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Trasplante de Células Madre , Envejecimiento , Animales , Animales Recién Nacidos , Calcio/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Forma de la Célula , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/ultraestructura , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Contracción Miocárdica , Fenotipo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
13.
Sci Rep ; 6: 31069, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488731

RESUMEN

Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Estimulación Acústica , Animales , Condicionamiento Psicológico , Técnicas In Vitro , Potenciación a Largo Plazo , Masculino , Plasticidad Neuronal , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sonido
14.
Cell Stem Cell ; 19(1): 95-106, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27320040

RESUMEN

Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but it has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show that they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B::eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX2B::eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Sistema Nervioso Simpático/citología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Línea Celular , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cardíacos/citología , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Optogenética , Fenotipo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
15.
Science ; 351(6279): 1293-6, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989246

RESUMEN

Maintaining energy homeostasis is crucial for the survival and health of organisms. The brain regulates feeding by responding to dietary factors and metabolic signals from peripheral organs. It is unclear how the brain interprets these signals. O-GlcNAc transferase (OGT) catalyzes the posttranslational modification of proteins by O-GlcNAc and is regulated by nutrient access. Here, we show that acute deletion of OGT from αCaMKII-positive neurons in adult mice caused obesity from overeating. The hyperphagia derived from the paraventricular nucleus (PVN) of the hypothalamus, where loss of OGT was associated with impaired satiety. These results identify O-GlcNAcylation in αCaMKII neurons of the PVN as an important molecular mechanism that regulates feeding behavior.


Asunto(s)
Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Hiperfagia/genética , N-Acetilglucosaminiltransferasas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Acetilglucosamina/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Metabolismo Energético/genética , Eliminación de Gen , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Neuronas/enzimología , Obesidad/genética , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/enzimología , Procesamiento Proteico-Postraduccional , Respuesta de Saciedad/fisiología
16.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26308891

RESUMEN

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansión de las Repeticiones de ADN/genética , Sistemas de Lectura Abierta/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , G-Cuádruplex , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/genética , ARN/genética , ARN/metabolismo
17.
Neuropsychopharmacology ; 40(13): 2916-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26081171

RESUMEN

Various subtypes of metabotropic glutamate receptors (mGluRs) have been implicated in fear extinction, but mGluR2/3 subtype has not been tested. Here, we found that microinjection of an mGluR2/3 antagonist, LY341495, into the lateral amygdala (LA), but not into the adjacent central amygdala (CeA), impaired extinction retention without affecting within-session extinction. In contrast, we failed to detect any significant changes in motility and anxiety during a period when extinction training or retention was performed after LY341495 injection, suggesting that the effect of LY341495 is specific to conditioned responses. Subsequently, on the basis of a previous finding that a long-term potentiation of presynaptic efficacy at cortical input synapses onto the lateral amygdala (C-LA synapses) supports conditioned fear, we tested the hypothesis that activation of mGluR2/3 leads to fear extinction via a long-term weakening of presynaptic functions at C-LA synapses. Fear extinction produced a decrease in C-LA synaptic efficacy, whereas LY341495 infusion into the LA blocked this extinction-induced C-LA efficacy decrease without altering synaptic efficacy at other LA synapses. Furthermore, extinction enhanced paired pulse ratio (PPR) of EPSCs, which inversely correlates with presynaptic release probability, whereas LY341495 infusion into the LA attenuated the extinction-induced increase in PPR, suggesting the presence of mGluR2/3-dependent presynaptic changes after extinction. Consistently, extinction occluded a presynaptic form of depression at C-LA synapses, whereas the LY341495 infusion into the LA rescued this occlusion. Together, our findings suggest that mGluR2/3 is required for extinction retention and that the mGluR2/3 action is mediated by the long-term weakening of release probability at C-LA synapses.


Asunto(s)
Amígdala del Cerebelo/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Masculino , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos , Xantenos/farmacología
18.
Anal Bioanal Chem ; 406(22): 5433-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25120180

RESUMEN

Posttranslational modifications modulate protein function in cells. Global analysis of multiple posttranslational modifications can provide insight into physiology and disease, but presents formidable challenges. In the present study, we used a technique that does not require target enrichment to analyze alterations in the phosphorylation and ubiquitination of proteins from patients with Alzheimer's disease (AD). Guided by our previous findings, we applied three strategies to further our understanding of the dysregulation of posttranslationally modified proteins. We first identified phosphorylation sites by determining peptide pI shifts using OFFGEL. Second, using tandem mass spectrometry, we determined the ubiquitination status of the proteins using an assay for a trypsin digestion remnant of ubiquitination (Gly-Gly). Third, for large-scale discovery, we quantified the global differences in protein expression. Of the proteins expressed in AD tissue at levels of 2.0 or greater compared with controls, 60 were phosphorylated and 56 were ubiquitinated. Of the proteins expressed at levels of 0.5 or lower compared with controls, 81 were phosphorylated and 56 were ubiquitinated. Approximately 98 % of the phosphopeptides exhibited a pI shift. We identified 112 new phosphorylation sites (51.38 %), and 92 new ubiquitination sites (96.84 %). Taken together, our findings suggest that analysis of the alterations in posttranslationally modified proteins may contribute to understanding the pathogenesis of AD and other diseases.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Hipocampo/metabolismo , Hipocampo/patología , Procesamiento Proteico-Postraduccional , Factores de Edad , Anciano , Anciano de 80 o más Años , Aldehído Deshidrogenasa/química , Apoferritinas/química , Humanos , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica , L-Aminoadipato-Semialdehído Deshidrogenasa , Lisina/química , Persona de Mediana Edad , Proteínas de Neoplasias/química , Péptidos/química , Fosforilación , Espectrometría de Masas en Tándem , Tripsina/química , Ubiquitina/química
19.
Front Behav Neurosci ; 8: 269, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25152720

RESUMEN

There is conflicting evidence regarding whether calcium-permeable receptors are removed during group I mGluR-mediated synaptic depression. In support of this hypothesis, AMPAR rectification, a correlative index of the synaptic expression of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs), is known to decrease after the induction of several types of group I mGluR-mediated long-term depression (LTD), suggesting that a significant proportion of synaptic CP-AMPARs is removed during synaptic depression. We have previously demonstrated that fear conditioning-induced synaptic potentiation in the lateral amygdala is reversed by group 1 mGluR-mediated depotentiation. Here, we examined whether CP-AMPARs are removed by mGluR1-mediated depotentiation of fear conditioning-induced synaptic potentiation. The synaptic expression of CP-AMPARs was negligible before, increased significantly 12 h after, and returned to baseline 48 h after fear conditioning, as evidenced by the changes in the sensitivity of lateral amygdala synaptic responses to NASPM. Importantly, the sensitivity to NASPM was not altered after induction of depotentiation. Our findings, together with previous results, suggest that the removal of CP-AMPARs is not required for the depotentiation of fear conditioning-induced synaptic potentiation at lateral amygdala synapses.

20.
PLoS One ; 9(6): e100108, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24925360

RESUMEN

Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Receptores AMPA/metabolismo , Estrés Psicológico/metabolismo , Animales , Condicionamiento Clásico , Miedo , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Estrés Psicológico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA