Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39128937

RESUMEN

Delays in the work-up and definitive management of patients with prostate cancer are common, with logistics of additional work-up after initial prostate biopsy, specialist referrals, and psychological reasons being the most common causes of delays. During the COVID-19 pandemic and the subsequent surges, timing of definitive care delivery with surgery or radiotherapy has become a topic of significant concern for patients with prostate cancer and their providers alike. In response, recommendations for the timing of definitive management of prostate cancer with radiotherapy and radical prostatectomy were published but without a detailed rationale for these recommendations. While the COVID-19 pandemic is behind us, patients are always asking the question: "When should I start radiation or undergo surgery?" In the absence of level I evidence specifically addressing this question, we will hereby present a narrative review to summarize the available data on the effect of treatment delays on oncologic outcomes for patients with localized prostate cancer from prospective and retrospective studies.

2.
Adv Radiat Oncol ; 9(6): 101475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690297

RESUMEN

Purpose: Clinical and imaging surveillance of patients with brain metastases is important after stereotactic radiosurgery (SRS) because many will experience intracranial progression (ITCP) requiring multidisciplinary management. The prognostic significance of neurologic symptoms at the time of ITCP is poorly understood. Methods and Materials: This was a multi-institutional, retrospective cohort study from 2015 to 2020, including all patients with brain metastases completing an initial course of SRS. The primary outcome was overall survival (OS) by presence of neurologic symptoms at ITCP. OS, freedom from ITCP (FF-ITCP), and freedom from symptomatic ITCP (FF-SITCP) were assessed via Kaplan-Meier method. Cox proportional hazard models tested parameters impacting FF-ITCP and FF-SITCP. Results: Among 1383 patients, median age was 63.4 years, 55% were female, and common primaries were non-small cell lung (49%), breast (15%), and melanoma (9%). At a median follow-up of 8.72 months, asymptomatic and symptomatic ITCP were observed in 504 (36%) and 194 (14%) patients, respectively. The majority of ITCP were distant ITCP (79.5%). OS was worse with SITCP (median, 10.2 vs 17.9 months, P < .001). SITCP was associated with clinical factors including total treatment volume (P = .012), melanoma histology (P = .001), prior whole brain radiation therapy (P = .003), number of brain metastases (P < .001), interval of 1 to 2 years from primary and brain metastasis diagnosis (P = .012), controlled extracranial disease (P = .042), and receipt of pre-SRS chemotherapy (P = .015). Patients who were younger and received post-SRS chemotherapy (P = .001), immunotherapy (P < .001), and targeted or small-molecule inhibitor therapy (P < .026) had better FF-SITCP. Conclusions: In this cohort study of patients with brain metastases completing SRS, neurologic symptoms at ITCP is prognostic for OS. This data informs post-SRS surveillance in clinical practice as well as future prospective studies needed in the modern management of brain metastases.

3.
Oncology (Williston Park) ; 38(5): 208-209, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38776517

RESUMEN

Artificial intelligence use in prostate cancer encompasses 4 main areas including diagnostic imaging, prediction of outcomes, histopathology, and treatment planning.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología
4.
NEJM AI ; 1(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38586278

RESUMEN

BACKGROUND: Machine learning (ML) may cost-effectively direct health care by identifying patients most likely to benefit from preventative interventions to avoid negative and expensive outcomes. System for High-Intensity Evaluation During Radiation Therapy (SHIELD-RT; NCT04277650) was a single-institution, randomized controlled study in which electronic health record-based ML accurately identified patients at high risk for acute care (emergency visit or hospitalization) during radiotherapy (RT) and targeted them for supplemental clinical evaluations. This ML-directed intervention resulted in decreased acute care utilization. Given the limited prospective data showing the ability of ML to direct interventions cost-efficiently, an economic analysis was performed. METHODS: A post hoc economic analysis was conducted of SHIELD-RT that included RT courses from January 7, 2019, to June 30, 2019. ML-identified high-risk courses (≥10% risk of acute care during RT) were randomized to receive standard of care weekly clinical evaluations with ad hoc supplemental evaluations per clinician discretion versus mandatory twice-weekly evaluations. The primary outcome was difference in mean total medical costs during and 15 days after RT. Acute care costs were obtained via institutional cost accounting. Physician and intervention costs were estimated via Medicare and Medicaid data. Negative binomial regression was used to estimate cost outcomes after adjustment for patient and disease factors. RESULTS: A total of 311 high-risk RT courses among 305 patients were randomized to the standard (n=157) or the intervention (n=154) group. Unadjusted mean intervention group supplemental visit costs were $155 per course (95% confidence interval, $142 to $168). The intervention group had fewer acute care visits per course (standard, 0.47; intervention, 0.31; P=0.04). Total mean adjusted costs were $3110 per course for the standard group and $1494 for the intervention group (difference in means, $1616 [95% confidence interval, $1450 to $1783]; P=0.03). CONCLUSIONS: In this economic analysis of a randomized controlled, health care ML study, mandatory supplemental evaluations for ML-identified high-risk patients were associated with both reduced total medical costs and improved clinical outcomes. Further study is needed to determine whether economic results are generalizable. (Funded in part by The Duke Endowment, The Conquer Cancer Foundation, the Duke Department of Radiation Oncology, and the National Cancer Institute of the National Institutes of Health [R01CA277782]; ClinicalTrials.gov number, NCT04277650.).

5.
JAMA Oncol ; 10(5): 642-647, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546697

RESUMEN

Importance: Toxic effects of concurrent chemoradiotherapy (CRT) can cause treatment interruptions and hospitalizations, reducing treatment efficacy and increasing health care costs. Physical activity monitoring may enable early identification of patients at high risk for hospitalization who may benefit from proactive intervention. Objective: To develop and validate machine learning (ML) approaches based on daily step counts collected by wearable devices on prospective trials to predict hospitalizations during CRT. Design, Setting, and Participants: This study included patients with a variety of cancers enrolled from June 2015 to August 2018 on 3 prospective, single-institution trials of activity monitoring using wearable devices during CRT. Patients were followed up during and 1 month following CRT. Training and validation cohorts were generated temporally, stratifying for cancer diagnosis (70:30). Random forest, neural network, and elastic net-regularized logistic regression (EN) were trained to predict short-term hospitalization risk based on a combination of clinical characteristics and the preceding 2 weeks of activity data. To predict outcomes of activity data, models based only on activity-monitoring features and only on clinical features were trained and evaluated. Data analysis was completed from January 2022 to March 2023. Main Outcomes and Measures: Model performance was evaluated in terms of the receiver operating characteristic area under curve (ROC AUC) in the stratified temporal validation cohort. Results: Step counts from 214 patients (median [range] age, 61 [53-68] years; 113 [52.8%] male) were included. EN based on step counts and clinical features had high predictive ability (ROC AUC, 0.83; 95% CI, 0.66-0.92), outperforming random forest (ROC AUC, 0.76; 95% CI, 0.56-0.87; P = .02) and neural network (ROC AUC, 0.80; 95% CI, 0.71-0.88; P = .36). In an ablation study, the EN model based on only step counts demonstrated greater predictive ability than the EN model with step counts and clinical features (ROC AUC, 0.85; 95% CI, 0.70-0.93; P = .09). Both models outperformed the EN model trained on only clinical features (ROC AUC, 0.53; 95% CI, 0.31-0.66; P < .001). Conclusions and Relevance: This study developed and validated a ML model based on activity-monitoring data collected during prospective clinical trials. Patient-generated health data have the potential to advance predictive ability of ML approaches. The resulting model from this study will be evaluated in an upcoming multi-institutional, cooperative group randomized trial.


Asunto(s)
Quimioradioterapia , Hospitalización , Aprendizaje Automático , Neoplasias , Humanos , Masculino , Femenino , Quimioradioterapia/efectos adversos , Persona de Mediana Edad , Anciano , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Estudios Prospectivos , Ejercicio Físico
6.
Pharmgenomics Pers Med ; 17: 65-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370334

RESUMEN

Natural language processing (NLP), a technology that translates human language into machine-readable data, is revolutionizing numerous sectors, including cancer care. This review outlines the evolution of NLP and its potential for crafting personalized treatment pathways for cancer patients. Leveraging NLP's ability to transform unstructured medical data into structured learnable formats, researchers can tap into the potential of big data for clinical and research applications. Significant advancements in NLP have spurred interest in developing tools that automate information extraction from clinical text, potentially transforming medical research and clinical practices in radiation oncology. Applications discussed include symptom and toxicity monitoring, identification of social determinants of health, improving patient-physician communication, patient education, and predictive modeling. However, several challenges impede the full realization of NLP's benefits, such as privacy and security concerns, biases in NLP models, and the interpretability and generalizability of these models. Overcoming these challenges necessitates a collaborative effort between computer scientists and the radiation oncology community. This paper serves as a comprehensive guide to understanding the intricacies of NLP algorithms, their performance assessment, past research contributions, and the future of NLP in radiation oncology research and clinics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA