Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(23): 15883-15893, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38016916

RESUMEN

Early assessment of crystalline thermodynamic solubility continues to be elusive for drug discovery and development despite its critical importance, especially for the ever-increasing fraction of poorly soluble drug candidates. Here we present a detailed evaluation of a physics-based free energy perturbation (FEP+) approach for computing the thermodynamic aqueous solubility. The predictive power of this approach is assessed across diverse chemical spaces, spanning pharmaceutically relevant literature compounds and more complex AbbVie compounds. Our approach achieves predictive (RMSE = 0.86) and differentiating power (R2 = 0.69) and therefore provides notably improved correlations to experimental solubility compared to state-of-the-art machine learning approaches that utilize quantum mechanics-based descriptors. The importance of explicit considerations of crystalline packing in predicting solubility by the FEP+ approach is also highlighted in this study. Finally, we show how computed energetics, including hydration and sublimation free energies, can provide further insights into molecule design to feed the medicinal chemistry DMTA cycle.


Asunto(s)
Descubrimiento de Drogas , Agua , Solubilidad , Entropía , Termodinámica , Agua/química
2.
Proc Natl Acad Sci U S A ; 119(43): e2204414119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252020

RESUMEN

Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates of organic molecular crystals are immensely challenging due to the extensive search space of different water contents, host molecular placements throughout the crystal, and internal molecular conformations. However, the dry frameworks of these hydrates, especially for nonstoichiometric or isostructural dehydrates, can often be predicted from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by developments in the field of drug binding, we introduce an efficient data-driven and topologically aware approach for predicting organic molecular crystal hydrate structures through a mapping of water positions within the crystal structure. The method does not require a priori specification of water content and can, therefore, predict stoichiometric, fractional, and nonstoichiometric hydrate structures. This approach, which we term a mapping approach for crystal hydrates (MACH), establishes a set of rules for systematic determination of favorable positions for water insertion within predicted or experimental crystal structures based on considerations of the chemical features of local environments and void regions. The proposed approach is tested on hydrates of three pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and void environments characteristic of hydrate structures. Overall, we show that our mapping approach introduces an advance in the efficient performance of hydrate CSP through generation of stable hydrate stoichiometries at low cost and should be considered an integral component for CSP workflows.


Asunto(s)
Agua , Cristalización , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Agua/química
3.
J Chem Theory Comput ; 18(9): 5725-5738, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35930763

RESUMEN

Crystal structure prediction (CSP) is generally used to complement experimental solid form screening and applied to individual molecules in drug development. The fast development of algorithms and computing resources offers the opportunity to use CSP earlier and for a broader range of applications in the drug design cycle. This study presents a novel paradigm of CSP specifically designed for structurally related molecules, referred to as Quick-CSP. The approach prioritizes more accurate physics through robust and transferable tailor-made force fields (TMFFs), such that significant efficiency gains are achieved through the reduction of expensive ab initio calculations. The accuracy of the TMFF is increased by the introduction of electrostatic multipoles, and the fragment-based force field parameterization scheme is demonstrated to be transferable for a family of chemically related molecules. The protocol is benchmarked with structurally related compounds from the Bromodomain and Extraterminal (BET) domain inhibitors series. A new convergence criterion is introduced that aims at performing only as many ab initio optimizations of crystal structures as required to locate the bottom of the crystal energy landscape within a user-defined accuracy. The overall approach provides significant cost savings ranging from three- to eight-fold less than the full-CSP workflow. The reported advancements expand the scope and utility of the underlying CSP building blocks as well as their novel reassembly to other applications earlier in the drug design cycle to guide molecule design and selection.


Asunto(s)
Algoritmos , Electricidad Estática
4.
J Am Chem Soc ; 143(42): 17479-17491, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34637297

RESUMEN

Direct-acting antiviral regimens have transformed therapeutic management of hepatitis C across all prevalent genotypes. Most of the chemical matter in these regimens comprises molecules well outside the traditional drug development chemical space and presents significant challenges. Herein, the implications of high conformational flexibility and the presence of a 15-membered macrocyclic ring in paritaprevir are studied through a combination of advanced computational and experimental methods with focus on molecular chameleonicity and crystal form complexity. The ability of the molecule to toggle between high and low 3D polar surface area (PSA) conformations is underpinned by intramolecular hydrogen bonding (IMHB) interactions and intramolecular steric effects. Computational studies consequently show a very significant difference of over 75 Å2 in 3D PSA between polar and apolar environments and provide the structural basis for the perplexingly favorable passive permeability of the molecule. Crystal packing and protein binding resulting in strong intermolecular interactions disrupt these intramolecular interactions. Crystalline Form I benefits from strong intermolecular interactions, whereas the weaker intermolecular interactions in Form II are partially compensated by the energetic advantage of an IMHB. Like Form I, no IMHB is observed within the receptor-bound conformation; instead, an intermolecular H-bond contributes to the potency of the molecule. The choice of metastable Form II is derisked through strategies accounting for crystal surface and packing features to manage higher form specific solid-state chemical reactivity and specific processing requirements. Overall, the results show an unambiguous link between structural features and derived properties from crystallization to dissolution, permeation, and docking into the protein pocket.

5.
J Chem Inf Model ; 61(3): 1412-1426, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33661005

RESUMEN

Drug design with patient centricity for ease of administration and pill burden requires robust understanding of the impact of chemical modifications on relevant physicochemical properties early in lead optimization. To this end, we have developed a physics-based ensemble approach to predict aqueous thermodynamic crystalline solubility, with a 2D chemical structure as the input. Predictions for the bromodomain and extraterminal domain (BET) inhibitor series show very close match (0.5 log unit) with measured thermodynamic solubility for cases with low crystal anisotropy and good match (1 log unit) for high anisotropy structures. The importance of thermodynamic solubility is clearly demonstrated by up to a 4 log unit drop in solubility compared to kinetic (amorphous) solubility in some cases and implications thereof, for instance on human dose. We have also demonstrated that incorporating predicted crystal structures in thermodynamic solubility prediction is necessary to differentiate (up to 4 log unit) between solubility of molecules within the series. Finally, our physics-based ensemble approach provides valuable structural insights into the origins of 3-D conformational landscapes, crystal polymorphism, and anisotropy that can be leveraged for both drug design and development.


Asunto(s)
Física , Agua , Humanos , Conformación Molecular , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...