Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445043

RESUMEN

The purpose of this study was to recycle red mud, an industrial byproduct that generates 300,000 tons per year, into the construction industry. Red mud was prepared as a liquid, neutralized with sulfuric acid, and replaced with cement mortar. The properties of liquefied red mud (LRM) neutralized with sulfuric acid (LRM + S) were investigated as well as its effect on cement mortar's mechanical and hydration characteristics. The pH of LRM + S stabilized at 7.6; its SO3 content was ~4.19% higher than that of LRM. Sulfites were contributed by calcium and sodium sulfate. The flows and setting times of the mortars containing LRM and LRM + S decreased as the substitution rate increased. The compressive strength of mortar that replaced 5% of cement with LRM + S was similar to that of the plain cement mortar. Scanning electron microscopy and X-ray diffraction revealed that the hydration products of LRM + S-containing cement mortar were similar to those of the plain cement mortar. Thus, LRM + S can be used as a cement substitute.

2.
Sensors (Basel) ; 19(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242680

RESUMEN

Studies on wearable sensors that monitor various movements by attaching them to a body have received considerable attention. Crack-based strain sensors are more sensitive than other sensors. Owing to their high sensitivity, these sensors have been investigated for measuring minute deformations occurring on the skin, such as pulse. However, existing studies have limited sensitivity at low strain range and nonlinearity that renders any calibration process complex and difficult. In this study, we propose a pre-strain and sensor-extending process to improve the sensitivity and linearity of the sensor. By using these pre-strain and sensor-extending processes, we were able to control the morphology and alignment of cracks and regulate the sensitivity and linearity of the sensor. Even if the sensor was fabricated in the same manner, the sensor that involved the pre-strain and extending processes had a sensitivity 100 times greater than normal sensors. Thus, our crack-based strain sensor had high sensitivity (gauge factor > 5000, gauge factor (GF = (△R/R0)/ε), linearity, and low hysteresis at low strain (<1% strain). Given its high sensing performance, the sensor can be used to measure micro-deformation, such as pulse wave and voice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA