Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(1): 730-738, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38100509

RESUMEN

A novel copper nanoparticle variant, denoted as Cu98Ni2 NPs, which incorporate Ni atoms in an atomically dispersed manner, has been successfully synthesized via a straightforward one-pot electrochemical codeposition process. These nanoparticles were subsequently employed as an anode to facilitate the oxidation of furfural, leading to the production of hydrogen gas. Voltammetric measurements revealed that the inclusion of trace amounts of Ni atoms in the nanoparticles resulted in a pronounced synergistic electronic effect between Cu and Ni. Consequently, a 43% increase in current density at 0.1 V was observed in comparison to pure Cu NPs. Importantly, when the Cu98Ni2 NPs were irradiated with visible light, a remarkable current density enhancement factor of 505% at 0.1 V was achieved relative to that of pure Cu NPs in the absence of light. This enhancement can be attributed to localized surface plasmon resonance induced by visible light, which triggers photothermal and photoelectric effects. These effects collectively contribute to the significant overall improvement in the electrocatalytic oxidation of furfural, leading to enhanced hydrogen evolution.

2.
Adv Sci (Weinh) ; 9(3): e2103561, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821483

RESUMEN

3D printing of fiber-reinforced composites is expected to be the forefront technology for the next-generation high-strength, high-toughness, and lightweight structural materials. The intrinsic architecture of 3D-printed composites closely represents biomimetic micro/macrofibril-like hierarchical structure composed of intermediate filament assembly among the micron-sized reinforcing fibers, and thus contributes to a novel mechanism to simultaneously improve mechanical properties and structural features. Notably, it is found that an interfacial heterogeneity between numerous inner interfaces in the hierarchical structure enables an exceptional increase in the toughness of composites. The strong interfacial adhesion between the fibers and matrix, with accompanying the inherently weak interfacial adhesion between intermediate filaments and the resultant interfacial voids, provide a close representation of the toughness behavior of natural architectures relying on the localized heterogeneity. Given the critical embedment length of fiber reinforcement, extraordinary improvement has been attained not only in the strength but also in toughness taking advantage of the synergy effect from the aforementioned nature-inspired features. Indeed, the addition of a small amount of short fiber to the brittle bio-filaments results in a noticeable increase of more than 200% in the tensile strength and modulus with further elongation increment. This article highlights the inherent structural hierarchy of 3D-printed composites and the relevant sophisticated mechanism for anomalous mechanical reinforcement.


Asunto(s)
Biomimética/métodos , Ensayo de Materiales/métodos , Impresión Tridimensional , Estrés Mecánico , Resistencia a la Tracción , Propiedades de Superficie
3.
Sci Rep ; 10(1): 12896, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732902

RESUMEN

Novel one-dimensional template-grown coaxial SiC@carbon nanotubes (SiC@CNTs) were fabricated using a chemical vapor deposition method. To facilitate the formation of SiC on CNT template, a molecular-level mixing process was used to coat the surface of commercial multiwalled carbon nanotubes (MWCNTs) by Fe2O3. These Fe-CNTs were transformed into SiC@CNT nanotubes, which were then mixed with Al6061 alloy and consolidated by spark plasma sintering to obtain Al6061-SiC@CNT nanocomposites. The addition of 5 vol% SiC@CNT resulted in 58% enhancement in Young's modulus and 46% enhancement in yield strength. Furthermore, the friction coefficient was reduced by 31% and the specific wear rate was reduced by 45%. The enhancement effect of Al6061-SiC@CNT on the mechanical and tribological properties was much greater than those of traditional nanoparticles, nanowires, and whiskers of SiCs. The extraordinary strengthening behavior of SiC@CNT, when compared with that of other SiC analogues, is attributed to the coaxial structure consisting of a SiC shell and CNT core. This coaxial structure enhanced the mechanical and tribological properties beyond that attainable with traditional SiC-derived reinforcements.

4.
Dent Mater ; 36(6): 744-754, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303354

RESUMEN

OBJECTIVE: The main goal of this research was to demonstrate the potential value of boron nitride nanoplatelets (BNNPs), which have excellent mechanical properties and biocompatibility, as a suitable reinforcement for dental materials. METHODS: The BNNPs were prepared by exfoliating h-BN via high-energy ball-milling and dispersion on a zirconia matrix. Then the composite powder was consolidated using spark plasma sintering. Fracture toughness, flexural strength and wear resistance were the mechanical properties explored. Agar diffusion-based biocompatibility testing was carried out. Low temperature degradation tests were also performed in a steam environment in an autoclave. RESULTS: The BNNPs dispersed zirconia exhibited improved strength (up to 27.3%), and fracture toughness was also increased (up to 37.5%) with the addition of 1-1.5 vol.% BNNPs. Tribological properties were also enhanced by the addition of BNNPs. The cytotoxicity tests confirmed that the BNNPs do not have obvious toxicity. The accelerated low-temperature degradation experiment revealed the barrier properties of the BNNPs, whose addition almost fully inhibited the degradation of the zirconia matrix in a humid environment. SIGNIFICANCE: The main contribution of this study is the introduction of an advanced material, BNNP, which can be used as a biocompatible reinforcement for dental materials, resulting in enhanced mechanical properties of the system due to its unique structure and extraordinary properties.


Asunto(s)
Compuestos de Boro , Circonio , Compuestos de Boro/toxicidad , Cerámica , Materiales Dentales/toxicidad , Resistencia Flexional , Ensayo de Materiales , Propiedades de Superficie
5.
RSC Adv ; 9(20): 11289-11295, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520219

RESUMEN

A multilayered graded structure can maximize the electromagnetic interference (EMI) shielding properties of a nanocomposite for a specific amount of a conductive filler in a polymer matrix. In this study, multilayered graded nanocomposites of graphene nanoplatelet (GNP)/Ni/polymethyl methacrylate (PMMA) were developed to achieve enhanced EMI shielding behavior. Both multilayered and monolayered nanocomposites were fabricated by controlling the compositions of GNP/Ni in the PMMA matrix. The contributions of the multilayered nanocomposite to EMI shielding were investigated and compared with the shielding effectiveness of the monolayered nanocomposite. The multilayered nanocomposite shows enhanced shielding effectiveness of around 61 dB in the X-band, which is more than three orders of magnitude higher than that of the monolayered nanocomposite. It has been confirmed that the measurements of reflection, absorption and total shielding effectiveness are in good accordance with the theoretically calculated results. The primary shielding mechanism was absorption due to conductive dissipation. The enhanced absorption of electromagnetic waves is attributed to an abrupt increase in the conductivity between layers in the direction of wave propagation in a multilayered nanocomposite due to impedance matching with the air and internal reflection between layers.

6.
Sci Rep ; 8(1): 14085, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237517

RESUMEN

A significant increase in compressive yield strength of the Al0.3CoCrFeMnNi high-entropy alloy (HEA) from 979 MPa to 1759 MPa was observed upon the introduction of 3 vol.% Y2O3. The HEAs were processed using spark plasma sintering of mechanically alloyed powders. Transmission electron microscopy and atom probe tomography confirmed the presence of compositionally complex nano-dispersoids in the Y2O3-added HEA. The significant increase in strength can be attributed to the nano-dispersoid strengthening coupled with grain refinement. Therefore, the in-situ formation of the compositionally complex nanoscale dispersoids during the alloy processing could be a novel approach to create entropy-stabilized oxide particles in strengthening of HEAs.

7.
ACS Appl Mater Interfaces ; 10(25): 21666-21671, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29873236

RESUMEN

A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.

8.
Sci Rep ; 6: 27609, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271465

RESUMEN

Ceramics have superior hardness, strength and corrosion resistance, but are also associated with poor toughness. Here, we propose the boron nitride nanoplatelet (BNNP) as a novel toughening reinforcement component to ceramics with outstanding mechanical properties and high-temperature stability. We used a planetary ball-milling process to exfoliate BNNPs in a scalable manner and functionalizes them with polystyrene sulfonate. Non-covalently functionalized BNNPs were homogeneously dispersed with Si3N4 powders using a surfactant and then consolidated by hot pressing. The fracture toughness of the BNNP/Si3N4 nanocomposite increased by as much as 24.7% with 2 vol.% of BNNPs. Furthermore, BNNPs enhanced strength (9.4%) and the tribological properties (26.7%) of the ceramic matrix. Microstructural analyzes have shown that the toughening mechanisms are combinations of the pull-out, crack bridging, branching and blunting mechanisms.

9.
ACS Appl Mater Interfaces ; 8(5): 3319-25, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26784473

RESUMEN

Carbon nanotubes (CNTs) and graphene are known to be good conductive fillers due to their favorable electrical properties and high aspect ratios and have been investigated for application as stretchable composite conductors. A stretchable conducting nanocomposite should have a small fraction of conductive filler material to maintain stretchability. Here we demonstrate enhanced electrical networks of nanocomposites via the use of a CNT-graphene hybrid system using a small mass fraction of conductive filler. The CNT-graphene hybrid system exhibits synergistic effects that prevent agglomeration of CNTs and graphene restacking and reduce contact resistance by formation of 1D(CNT)-2D(graphene) interconnection. These effects resulted in nanocomposite materials formed of multiwalled carbon nanotubes (MWCNTs), thermally reduced graphene (TRG), and polydimethylsiloxane (PDMS), which had a higher electrical conductivity compared with MWCNT/PDMS or TRG/PDMS nanocomposites until specific fraction that is sufficient to form electrical network among conductive fillers. These nanocomposite materials maintained their electrical conductivity when 60% strained.

10.
Nano Converg ; 3(1): 8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28191418

RESUMEN

Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

11.
Adv Mater ; 27(21): 3250-5, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25899742

RESUMEN

Increase in conductivity and mechanical properties of a carbon nanotube (CNT) fiber inspired by mussel-adhesion chemistry is described. Infiltration of polydopamine into an as-drawn CNT fiber followed by pyrolysis results in a direct insulation-to-conduction transformation of poly(dopamine) into pyrolyzed-poly(dopamine) (py-PDA), retaining the intrinsic adhesive function of catecholamine. The py-PDA enhances both the electrical conductivity and the mechanical strength of the CNT fibers.

12.
Nano Lett ; 15(2): 1238-44, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25622114

RESUMEN

The scalable preparation of two-dimensional hexagonal boron nitride (h-BN) is essential for practical applications. Despite intense research in this area, high-yield production of two-dimensional h-BN with large-size and high solubility remains a key challenge. In the present work, we propose a scalable exfoliation process for hydroxyl-functionalized BN nanoplatelets (OH-BNNPs) by a simple ball milling of BN powders in the presence of sodium hydroxide via the synergetic effect of chemical peeling and mechanical shear forces. The hydroxide-assisted ball milling process results in relatively large flakes with an average size of 1.5 µm with little damage to the in-plane structure of the OH-BNNP and high yields of 18%. The resultant OH-BNNP samples can be redispersed in various solvents and form stable dispersions that can be used for multiple purposes. The incorporation of the BNNPs into the polyethylene matrix effectively enhanced the barrier properties of the polyethylene due to increased tortuosity of the diffusion path of the gas molecules. Hydroxide-assisted ball milling process can thus provide simple and efficient approaches to scalable preparation of large-size and highly soluble BNNPs. Moreover, this exfoliation process is not only easily scalable but also applicable to other layered materials.

13.
ACS Appl Mater Interfaces ; 6(10): 7751-8, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24708520

RESUMEN

We report boron nitride nanoflakes (BNNFs), for the first time, as a nanofiller for polymer electrolyte membranes in fuel cells. Utilizing the intrinsic mechanical strength of two-dimensional (2D) BN, addition of BNNFs even at a marginal content (0.3 wt %) significantly improves mechanical stability of the most representative hydrocarbon-type (HC-type) polymer electrolyte membrane, namely sulfonated poly(ether ether ketone) (sPEEK), during substantial water uptake through repeated wet/dry cycles. For facile processing with BNNFs that frequently suffer from poor dispersion in most organic solvents, we non-covalently functionalized BNNFs with 1-pyrenesulfonic acid (PSA). Besides good dispersion, PSA supports efficient proton transport through its sulfonic functional groups. Compared to bare sPEEK, the composite membrane containing BNNF nanofiller exhibited far improved long-term durability originating from enhanced dimensional stability and diminished chronic edge failure. This study suggests that introduction of properly functionalized 2D BNNFs is an effective strategy in making various HC-type membranes sustainable without sacrificing their original adventurous properties in polymer electrolyte membrane fuel cells.

14.
J Nanosci Nanotechnol ; 14(12): 9152-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25971028

RESUMEN

Although carbon nanotubes (CNTs) have extraordinary mechanical, thermal, and electrical properties, application of CNTs remains limited due to their unique nano-sized tubular forms. CNT electrodes have relatively high sheet resistance, which does not meet the industrial requirements of various electrode materials. Thus, there are still challenges for improving the performance of CNTs in real applications, particularly in terms of satisfying industrial requirements. In this study, to utilize CNTs in bulk scale electrode applications, we developed a dry spinning technique. The dry spinning technique is a solid state fiber spinning technique that provides an adjustable aligned structure. The dry spinning approach also offers a facile and inexpensive fabrication process, factors which are favorable for industrial scalability for fabricating electrodes. We demonstrate a multilayer stacking process for enhancing the performance for Li-ion batteries. Multi-layer CNT textiles have low sheet resistance and a 3D woven structure provides high surface area. The fabricated 3D woven structured electrode delivers a higher reversible capacity of more than 400 mA hr/g with high cycle stabilities.

15.
J Nanosci Nanotechnol ; 13(11): 7365-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245256

RESUMEN

The carbon nanotubes (CNTs) are actively applied to the reinforcements for composite materials during last decade. One of the attempts is development of CNT/Carbon composites. Although there are some reports on the enhancement of mechanical properties by addition of CNTs in carbon or carbon fiber, it is far below the expectation. Considering the microstructure of carbon materials such as carbon fiber, the properties of them can be modified and enhanced by control of graphitization and alignment of graphene planes. In this study, enhanced graphitization of carbon has been observed the vicinity of CNTs during the pyrolysis of CNT/Polyaniline composites. As a result, novel types of composite, consisting of treading CNTs and coated graphite, can be fabricated. High-resolution transmission electron microscopy revealed a specific orientation relationship between the graphene layers and the CNTs, with an angle of 110 degrees between the layers and the CNT axis. The possibility of graphene alignment control in the carbon by the addition of CNTs is demonstrated.


Asunto(s)
Compuestos de Anilina/química , Carbono/química , Cristalización/métodos , Grafito/química , Nanotubos de Carbono/química , Adsorción , Calefacción , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
16.
J Nanosci Nanotechnol ; 13(11): 7386-90, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245260

RESUMEN

Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed.


Asunto(s)
Electrodos , Microelectrodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Intensificación de Imagen Radiográfica/instrumentación , Radiografía/instrumentación , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Dispersión de Radiación , Textiles , Rayos X
17.
J Nanosci Nanotechnol ; 13(11): 7669-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245312

RESUMEN

Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.


Asunto(s)
Resinas Epoxi/química , Nanotubos de Carbono/química , Níquel/química , Absorción , Campos Electromagnéticos , Resinas Epoxi/efectos de la radiación , Ensayo de Materiales , Nanotubos de Carbono/efectos de la radiación , Nanotubos de Carbono/ultraestructura , Níquel/efectos de la radiación , Tamaño de la Partícula , Dispersión de Radiación
18.
Adv Mater ; 25(46): 6724-9, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23983045

RESUMEN

RGO flakes are homogeneously dispersed in a Cu matrix through a molecular-level mixing process. This novel fabrication process prevents the agglomeration of the RGO and enhances adhesion between the RGO and the Cu. The yield strength of the 2.5 vol% RGO/Cu nanocomposite is 1.8 times higher than that of pure Cu. The strengthening mechanism of the RGO is investigated by a double cantilever beam test using the graphene/Cu model structure.


Asunto(s)
Cobre/química , Grafito/química , Nanocompuestos/química , Iones/química , Oxidación-Reducción , Óxidos/química , Espectrometría Raman
19.
Small ; 9(15): 2602-10, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23457081

RESUMEN

The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix.

20.
ACS Nano ; 7(2): 1239-45, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23272894

RESUMEN

The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...