Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D929-D937, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37831137

RESUMEN

DNA methylation acts as a vital epigenetic regulatory mechanism involved in controlling gene expression. Advances in sequencing technologies have enabled characterization of methylation patterns at single-base resolution using bisulfite sequencing approaches. However, existing methylation databases have primarily focused on mean methylation levels, overlooking phased methylation patterns. The methylation status of CpGs on individual sequencing reads represents discrete DNA methylation haplotypes (mHaps). Here, we present mHapBrowser, a comprehensive database for visualizing and analyzing mHaps. We systematically processed data of diverse tissues in human, mouse and rat from public repositories, generating mHap format files for 6366 samples. mHapBrowser enables users to visualize eight mHap metrics across the genome through an integrated WashU Epigenome Browser. It also provides an online server for comparing mHap patterns across samples. Additionally, mHap files for all samples can be downloaded to facilitate local processing using downstream analysis toolkits. The utilities of mHapBrowser were demonstrated through three case studies: (i) mHap patterns are associated with gene expression; (ii) changes in mHap patterns independent of mean methylation correlate with differential expression between lung cancer subtypes; and (iii) the mHap metric MHL outperforms mean methylation for classifying tumor and normal samples from cell-free DNA. The database is freely accessible at http://mhap.sibcb.ac.cn/.


Asunto(s)
Metilación de ADN , Bases de Datos Genéticas , Animales , Humanos , Ratones , Ratas , Epigénesis Genética , Haplotipos , Análisis de Secuencia de ADN
2.
Genome Res ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940553

RESUMEN

DNA methylation and associated regulatory elements play a crucial role in gene expression regulation. Previous studies have focused primarily on the distribution of mean methylation levels. Advances in whole-genome bisulfite sequencing (WGBS) have enabled the characterization of DNA methylation haplotypes (MHAPs), representing CpG sites from the same read fragment on a single chromosome, and the subsequent identification of methylation haplotype blocks (MHBs), in which adjacent CpGs on the same fragment are comethylated. Using our expert-curated WGBS data sets, we report comprehensive landscapes of MHBs in 17 representative normal somatic human tissues and during early human embryonic development. Integrative analysis reveals MHBs as a distinctive type of regulatory element characterized by comethylation patterns rather than mean methylation levels. We show the enrichment of MHBs in open chromatin regions, tissue-specific histone marks, and enhancers, including super-enhancers. Moreover, we find that MHBs tend to localize near tissue-specific genes and show an association with differential gene expression that is independent of mean methylation. Similar findings are observed in the context of human embryonic development, highlighting the dynamic nature of MHBs during early development. Collectively, our comprehensive MHB landscapes provide valuable insights into the tissue specificity and developmental dynamics of DNA methylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA