Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.164
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; : 119751, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776988

RESUMEN

Akkermansia muciniphila (A. muciniphila), a probiotic, has been linked to macrophage phenotypic polarization in different diseases. However, the role and mechanisms of A. muciniphila in regulating macrophage during ulcerative colitis (UC) are not clear. This research aimed to examine the impact of A. muciniphila on dextran sulfate sodium (DSS)-induced acute colitis and elucidate the underlying mechanism related to macrophage phenotypic polarization. A. muciniphila inhibited weight loss, increased disease activity index, and ameliorated inflammatory injury in colonic tissues in mice induced with DSS. Furthermore, A. muciniphila reduced macrophage M1 polarization and ameliorated epithelial barrier damage in colonic tissues of DSS-induced mice through inhibition of histone deacetylase 5 (HDAC5). In contrast, the effect of A. muciniphila was compromised by HDAC5 overexpression. HDAC5 deacetylated H3K9ac modification of the disabled homolog 2 (DAB2) promoter, which led to repressed DAB2 expression. DAB2 overexpression blocked HDAC5-induced pro-inflammatory polarization of macrophages, whereas knockdown of DAB2 resulted in the loss of effects of A. muciniphila against colonic injury in DSS-induced mice. Taken together, A. muciniphila-induced loss of HDAC5 hampered the deacetylation of DAB2 and enhanced the expression of DAB2. Our findings propose that A. muciniphila may be a possible probiotic agent for alleviating DSS-induced acute colitis.

3.
J Psychiatr Res ; 174: 297-303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678687

RESUMEN

BACKGROUND: Biological rhythms denote the cyclical patterns of life activities anchored to a 24-hour cycle. Research shows that depression exhibits disturbances in biological rhythms. Yet, the relationship between these biological rhythms and concomitant anxiety symptoms is insufficiently investigated in structured clinical assessments. METHODS: This multicenter study, carried out in four Chinese hospitals, comprehensively examined the relationship between anxiety and disruptions in biological rhythms among patients with depression. The study encompassed 218 patients diagnosed with depression and 205 matched healthy controls. The Chinese version of the Biological Rhythms Interview of Assessment in Neuropsychiatry was utilized to evaluate the participants' biological rhythms, focusing on four dimensions: sleep, activity, social, and diet. RESULTS: In patients with depression, there is a significant positive correlation between the severity of anxiety symptoms and the disturbances in biological rhythms. The severity of anxiety and depression, along with the quality of life, are independently associated with disruptions in biological rhythms. The mediation model reveals that anxiety symptoms mediate the relationship between depressive symptoms and biological rhythms. CONCLUSION: This research highlights the role of anxiety within the spectrum of depressive disorders and the associated disturbances in biological rhythms. Our findings shed light on potential pathways towards more targeted preventive strategies and therapeutic interventions for individuals battling depression and anxiety.


Asunto(s)
Ansiedad , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Ansiedad/fisiopatología , Depresión/fisiopatología , Ritmo Circadiano/fisiología , Trastorno Depresivo/fisiopatología , Adulto Joven , Trastornos Cronobiológicos/fisiopatología
5.
Cell Biol Toxicol ; 40(1): 19, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573528

RESUMEN

RNA-binding proteins (RBPs) make vital impacts on tumor progression and are important potential targets for tumor treatment. Previous studies have shown that RBP regulator of differentiation 1 (ROD1), enriched in the nucleus, is abnormally expressed and functions as a splicing factor in tumors; however, the mechanism underlying its involvement in gastric cancer (GC) is unknown. In this study, ROD1 is found to stimulate GC cell proliferation and metastasis and is related to poor patient prognosis. In vitro experiments showed that ROD1 influences GC proliferation and metastasis through modulating the imbalance of the level of the oncogenic gene OIP5 and the tumor suppressor gene GPD1L. Further studies showed that the N6-methyladenosine (m6A) "reader" protein YTHDC1 can interact with ROD1 and regulate the balance of the expression of the downstream molecules OIP5/GPD1L by promoting the nuclear enrichment of ROD1. Therefore, YTHDC1 stimulates GC development and progression through modulating nuclear enrichment of the splicing factor ROD1.


Asunto(s)
Neoplasias Gástricas , Humanos , Diferenciación Celular , Proteínas del Tejido Nervioso , Factores de Empalme de ARN
6.
Plant Dis ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549271

RESUMEN

Cowpea or black-eyed pea [Vigna unguiculata (L.) Walp.] is a dual-purpose leguminous crop grown for food and fodder. In September 2022, cowpea plants exhibiting symptoms of a leaf spot and blight were observed in Renda Town located in Jingning County of Gansu Province, China, with the disease incidence in individual cowpea fields as high as 100%. Diseased leaves showed variable-sized, nearly circular brown blotches, large blotches with dark brown margins, and the adaxial surfaces of blotches had small black dots and whorls (Fig. 1). Multiple isolates with consistent colony characteristics were obtained from cowpea leaves with typical symptoms. The isolates were transferred to fresh potato dextrose agar medium (PDA) and then purified by transferring hyphal tips to PDA. Three isolates, JNJD-1, JNJD-2, and JNJD-3, were selected for subsequent identification and pathogenicity determination. After eight days at 25℃ on PDA, the colonies appeared irregular, aerial mycelium dense, cottony, atrovirens to olive brown, with white hyphae on the undulate margin (Fig. 2A and B). The pycnidia were globose to sub-globose, brown to dark brown, with 70-110 µm diameters. Single celled hyaline conidia were ellipsoidal to oblong with obtuse ends, and measured 6.6-9.3 × 2.8-4.1 µm (x̄ = 7.8 × 3.5 µm, n = 50) (Fig. 2C). Morphological characteristics are similar to the description of the genus Boeremia (Aveskamp et al, 2010). Primer pairs ITS1/ITS4, LR0R/LR5, fRPB2-5F2/fRPB2-7cR, and TUB2FD/TUB4RD were used to amplify portions of the ITS, LSU, RPB2, and TUB genes, respectively (Chen et al, 2015). The obtained sequences (Accession numbers: PP033662 to PP033664 for ITS, PP033667 to PP033669 for LSU, PP035531 to PP035533 for RPB2, and PP035534 to PP035536 for TUB) were 97% identical to that of a B. exigua strain CBS 431.74 (accession no. FJ427001, EU754183, GU371780, and FJ427112) (Table 1). The constructed maximum likelihood tree indicated close relationships between three isolates and B. exigua, which clustered together (Fig. 3). Cowpea plants (cultivar Junlintianxia) at the three-leaf stage were inoculated by spraying a spore suspension (1×106 conidia/ml) of JNJD-1, JNJD-2, and JNJD-3 until run off and incubated at greenhouse conditions (25°C and 12 h light). Inoculations with sterile water were used as a control and each treatment was repeated 3 times with five plants per replicate. Small brown spots appeared on the infected leaves at 2 dpi, followed by the appearance of large blotches, with dark brown at the margin and grayish-white in the center at 5 dpi (Fig. 4A). These lesions gradually increase and coalesce, causing leaf chlorosis and finally defoliation in serious cases. Disease incidence in inoculated cowpea plants treated with the isolates JNJD-1, JNJD-2, and JNJD-3 reached almost 100%. In contrast, control plants developed no symptoms (Fig. 4B). The pathogens were re-isolated from the inoculated leaves and identified as B. exigua using morphological and molecular analysis, whereas no fungus was isolated from control leaves. The experiment was repeated once under the same conditions, yielding similar results. B. exigua has a broad host range, infecting 19 families and 31 genera of plant species, and causing leaf spots, leaf blight, and tuber rot (Lan and Duan 2022). To our knowledge, this is the first report of the pathogen B. exigua causing spot blight on cowpeas. It has been reported that B. exigua infects leguminous crops from multiple genera, such as field pea, soybean, white clover, and Dumasia villosa (Liu et al, 2023). This study further enriches the host range of this pathogen and the pathogen species of cowpea leaf diseases.

7.
ACS Biomater Sci Eng ; 10(4): 2337-2350, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38531043

RESUMEN

The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.


Asunto(s)
MicroARNs , Osteogénesis , Animales , Osteogénesis/genética , Gelatina/farmacología , Gelatina/química , Andamios del Tejido/química , Regeneración Ósea/genética , MicroARNs/genética , Polímeros , Impresión Tridimensional
8.
J Clin Transl Hepatol ; 12(3): 245-256, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38426192

RESUMEN

Background and Aims: Acetaminophen (APAP)-induced liver injury (AILI) has an increasing incidence worldwide. However, the mechanisms contributing to such liver injury are largely unknown and no targeted therapy is currently available. The study aimed to investigate the effect of BTF3L4 overexpression on apoptosis and inflammation regulation in vitro and in vivo. Methods: We performed a proteomic analysis of the AILI model and found basic transcription factor 3 like 4 (BTF3L4) was the only outlier transcription factor overexpressed in the AILI model in mice. BTF3L4 overexpression increased the degree of liver injury in the AILI model. Results: BTF3L4 exerts its pathogenic effect by inducing an inflammatory response and damaging mitochondrial function. Increased BTF3L4 expression increases the degree of apoptosis, reactive oxygen species generation, and oxidative stress, which induces cell death and liver injury. The damage of mitochondrial function by BTF3L4 triggers a cascade of events, including reactive oxygen species accumulation and oxidative stress. According to the available AILI data, BTF3L4 expression is positively associated with inflammation and may be a potential biomarker of AILI. Conclusions: Our results suggest that BTF3L4 is a pathogenic factor in AILI and may be a potential diagnostic maker for AILI.

9.
Front Oncol ; 14: 1327691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444686

RESUMEN

Background: Baseline serological biomarkers have the potential to predict the benefits of adjuvant chemotherapy in patients with gastric cancer. However, the fluctuating nature of postoperative recurrence risk makes precise treatment challenging. We aimed to develop a risk score in real-time predicting outcomes for postoperative GC patients using blood chemistry tests. Materials and methods: This was a retrospective, multicentre, longitudinal cohort study from three cancer centres in China, with a total of 2737 GC patients in the pTNM stage Ib to III. Among them, 1651 patients with at least two serological records were assigned to the training cohort. Model validation was carried out using separate testing data with area under curve (AUC). The least absolute shrinkage and selection operator (LASSO) and random forest-recursive feature elimination (RF-RFE) algorithm were used to select the parameters. Results: The Cox regression model derived six risk factors to construct a composite score (low-risk: 0-2 score; high risk: 3-6 score), including CEA, CA125, CA199, haemoglobin, albumin, and neutrophil to lymphocyte ratio. The risk score accurately predicted mortality in 1000-time bootstrap (AUROCs:0.658; 95% CI: 0.645, 0.670), with the highest AUROC (0.767; 95% CI: 0.743, 0.791) after 1 year since the gastrectomy. In validation dataset, the risk score had an AUROC of 0.586 (95% CI 0.544, 0.628). Furthermore, patients with high risk at 1 month derived significant clinical benefits from adjuvant chemotherapy (P for interaction <0.0001). Compared with the low-low-low risk group, the low-low-high risk group of the long-term state chain (risk state at baseline, 6 months, 1 year) had the worse OS (HR, 6.91; 95%CI: 4.27, 11.19) and DFS (HR, 7.27; 95%CI: 4.55, 11.63). Conclusion: The dynamic risk score is an accurate and user-friendly serological risk assessment tool for predicting outcomes and assisting clinical decisions after gastrectomy.

10.
Immunology ; 171(4): 595-608, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38205925

RESUMEN

Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.


Asunto(s)
Asma , Microbioma Gastrointestinal , Mycobacteriaceae , Mycobacterium , Ratones , Animales , Inflamación , Ratones Endogámicos BALB C , Ovalbúmina , Modelos Animales de Enfermedad , Pulmón , Líquido del Lavado Bronquioalveolar
11.
Phytomedicine ; 123: 155188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056146

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE: This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS: IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS: IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION: This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Quercetina/análogos & derivados , Ratones , Animales , Ratas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Hígado , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Lípidos
12.
Int Immunopharmacol ; 126: 111241, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37984253

RESUMEN

BACKGROUND: Sepsis is a systemic inflammatory syndrome that can lead to multiple organ dysfunction and life-threatening complications. Sepsis-induced myocardial dysfunction (SIMD) has been confirmed to be present in half of patients with septic shock, increasing their mortality rate to 70-90%. The pathogenesis of SIMD is complex, and no specific clinical treatment has yet been developed. Caloric restriction mimetics (CRM), compounds that simulate the biochemical and functional properties of CR, can improve cardiovascular injury by activating autophagy. This study investigated the effect of a new type of CRM which can induce hypoxia, the SGLT nonspecific inhibitor phlorizin on SIMD. MATERIALS AND METHODS: In vivo, phlorizin was administered at 1 mg/kg/day intragastrically for 28 days. In vitro, AC16 was treated with 120 µM phlorizin for 48 h. Echocardiography was used to assess cardiac function. Myocardial injury markers were detected in serum and cell supernatant. Western blotting was employed to detect changed proteins associated with apoptosis and autophagy. Immunofluorescence, immunohistochemistry, co-immunoprecipitation, molecular docking, and other methods were also used to illustrate cellular changes. RESULTS: In vivo, phlorizin significantly improved the survival rate and cardiac function after sepsis injury, reduced markers of myocardial injury, inhibited myocardial apoptosis and oxidative stress, and promoted autophagy. In vitro, phlorizin alleviated the apoptosis of AC16, as well as inhibited oxidative stress and apoptotic enzyme activity. Phlorizin acts on autophagy at multiple sites through low energy (activation of AMPK) and hypoxia (release of Beclin-1 by Hif-1α/Bnip3 axis), promoting the formation and degradation of autophagosomes. CONCLUSION: We indicated for the first time that phlorizin could inhibit glucose uptake via GLUT-1 and conforms to the metabolic characteristics of CRM, it can induce the hypoxic transcriptional paradigm. In addition, it inhibits apoptosis and improves SIMD by promoting autophagy generation and unobstructing autophagy flux. Moreover, it affects autophagy by releasing Beclin-1 through the Hif-1α/Bnip3 axis.


Asunto(s)
Autofagia , Miocitos Cardíacos , Florizina , Sepsis , Florizina/farmacología , Hipoxia , Miocitos Cardíacos/efectos de los fármacos , Sepsis/complicaciones , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Restricción Calórica , Corazón/efectos de los fármacos , Cardiotónicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Apoptosis
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166917, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37820821

RESUMEN

The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.


Asunto(s)
Vesículas Extracelulares , Macrófagos Asociados a Tumores , Inmunoterapia , Macrófagos , Comunicación Celular
14.
Environ Toxicol ; 39(4): 2218-2228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38130072

RESUMEN

Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. Eupatilin is a key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai. Recent research reports have proved the inhibitory function of Eupatilin in many diseases. MicroRNAs (miRNAs) are 21-23 nucleotide-long, single-stranded, noncoding RNA molecules generated endogenously, and many studies have indicated that miRNAs are involved in the development of osteoporosis. This study explored the role and potential mechanism of Eupatilin underlying PMOP. First, rats were given intragastric administration of Eupatilin every day and subcutaneous injections of oligonucleotides or plasmids that interfered with miR-211-5p or janus kinase 2 (JAK2) once a week. After 4 weeks, the PMOP rat model was established. Then, serum alkaline phosphatase, calcium, and phosphorus levels, as well as femur bone mineral density and biomechanical parameters, were detected. Hematoxylin-eosin staining and Masson staining were applied for detecting the pathological condition of femur, and immunohistochemical staining was for detecting osteocalcin. MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2; and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was analyzed. The targeting relation between miR-211-5p and JAK2 was also verified. The experimental results revealed that Eupatilin improved the pathological conditions of PMOP rats by promoting the proliferation and mineralization of osteoblasts. MiR-211-5p was down-regulated and JAK2/STAT3 was upregulated in PMOP rats. Upregulation of miR-211-5p further improved the pathological conditions of PMOP rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. JAK2 offset the effects of elevated miR-211-5p on PMOP rats. Overall, Eupatilin attenuates PMOP through elevating miR-211-5p and repressing JAK2/STAT3 pathway, which suggests the utility of Eupatilin as a potential drug for POMP treatment.


Asunto(s)
Flavonoides , MicroARNs , Osteoporosis Posmenopáusica , Humanos , Femenino , Ratas , Animales , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/genética , MicroARNs/genética , MicroARNs/metabolismo
15.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1007910

RESUMEN

OBJECTIVE@#This study explored the potentially modifiable factors for depression and major depressive disorder (MDD) from the MR-Base database and further evaluated the associations between drug targets with MDD.@*METHODS@#We analyzed two-sample of Mendelian randomization (2SMR) using genetic variant depression ( n = 113,154) and MDD ( n = 208,811) from Genome-Wide Association Studies (GWAS). Separate calculations were performed with modifiable risk factors from MR-Base for 1,001 genomes. The MR analysis was performed by screening drug targets with MDD in the DrugBank database to explore the therapeutic targets for MDD. Inverse variance weighted (IVW), fixed-effect inverse variance weighted (FE-IVW), MR-Egger, weighted median, and weighted mode were used for complementary calculation.@*RESULTS@#The potential causal relationship between modifiable risk factors and depression contained 459 results for depression and 424 for MDD. Also, the associations between drug targets and MDD showed that SLC6A4, GRIN2A, GRIN2C, SCN10A, and IL1B expression are associated with an increased risk of depression. In contrast, ADRB1, CHRNA3, HTR3A, GSTP1, and GABRG2 genes are candidate protective factors against depression.@*CONCLUSION@#This study identified the risk factors causally associated with depression and MDD, and estimated 10 drug targets with significant impact on MDD, providing essential information for formulating strategies to prevent and treat depression.


Asunto(s)
Humanos , Trastorno Depresivo Mayor/genética , Depresión , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Proteínas de Transporte de Serotonina en la Membrana Plasmática
16.
Acta Pharmaceutica Sinica ; (12): 35-42, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005437

RESUMEN

Sesquiterpenoids are widely found in nature, while nitrobenzoyl sesquiterpenoids are relatively rare. Twelve natural nitrobenzoyl sesquiterpenoids were all derived from marine Aspergillus fungi, which are typical natural products with marine characteristics. These natural products exhibit good antitumor, antiviral, and inhibition of osteoclast differentiation activity, especially in the treatment of osteoclast-related diseases, showing good medicinal development value. This article reviews the natural product sources, chemical structure, chemical synthesis, biosynthesis, bioactivity, and pharmacological mechanisms of nitrobenzoyl sesquiterpenoids and predicts and discusses their absorption, distribution, metabolism, excretion, toxicity (ADME/T), and drug-likeness, providing a comprehensive understanding of the natural products of nitrobenzoyl sesquiterpenoids from marine sources and their potential for pharmaceutical development.

17.
Acta Pharmaceutica Sinica ; (12): 775-783, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1016625

RESUMEN

Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which Atopa belladonna is the main commercial drug source. It is of great industrial value to obtain TAs in large quantities by plant metabolic engineering. In TAs pathway, cytochrome oxidase CYP82M3 catalyze the synthesis of tropinone and then tropinone reductase I (TRI) compete with TRII for tropinone to form tropine leading to the TAs synthesis (drainage). In this study, based on the "increasing flow and drainage" metabolic engineering strategy, two genes, namely HnCYP82M3 and DsTRI from Hyoscyamus niger and Datura stramonium, respectively, were overexpressed in the hair roots of A. belladonna, with a view to promote the TAs accumulation. The HnCYP82M3 gene was cloned from the root of H. niger, and it encoded amino acid with 91.7% sequence identity with AbCYP82M3 from A. belladonna. Overexpression of HnCYP82M3 alone did not affect the content of TAs in hair roots of A. belladonna, indicating that CYP82M3 was not a key enzyme in TAs biosynthesis. Simultaneous overexpression of HnCYP82M3 and DsTRI greatly promoted the accumulation of the three TAs, and the contents of hyoscyamine, anisodamine and scopolamine were 4.97 times, 2.83 times and 2.19 times that of the control, respectively, and the increase amplitude was greater than that of single overexpression of DsTRI. This study showed that the "increasing flow and drainage" strategy of enzyme genes co-expression at branch points was a promising metabolic engineering method to effectively improve the biosynthesis of TAs in A. belladonna, and laid a theoretical and technical foundation for the large-scale industrial acquisition of TAs.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013596

RESUMEN

Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg

19.
Molecules ; 28(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067633

RESUMEN

The development of photocatalysts for organic degradation is a hot research topic. In this study, CdZnS was selected as the carrier, and ZIF-8 was combined with it to explore the photocatalytic performance of the composite. In addition, the compound material, CdZnS@ZIF-8, was used as a photocatalyst for the decomposition of methylene blue dye, and the performance of pure CdZnS and pure ZIF-8 was compared. The photocatalytic efficiency of CdZnS@ZIF-8 was significantly higher than that of the other two. In the experimental reaction, the amount of catalyst was 0.04 g, the pH value was 7, the initial concentration of methylene blue aqueous solution was 20 mg/L, and the degradation of methylene blue in 50 mL aqueous solution could reach 99.5% under visible light irradiation for 90 min, showing excellent photocatalytic efficiency in the visible light range. It demonstrated excellent photocatalytic function in the visible light region, and the electron transfer phenomenon at the interface occurred in the het-junction and the separation of the photo-generating electron-hole as an electron acceptor of ZIF-8 further promoted the photocatalytic effect.

20.
Biomicrofluidics ; 17(6): 061302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058463

RESUMEN

Particle image velocimetry and particle tracking velocimetry have played pivotal roles in flow and particle characterization, owing to their non-invasive and accurate data collection methods. However, their broader application in the biomicrofluidics field is constrained by challenges, such as intensive calibration, high post-processing costs, and optical compatibility issues, especially in settings where space is a bottleneck. This article describes recent advancements in non-iterative ray tracing that promise more streamlined post-capture calibration and highlights examples of applications and areas that merit further technological investigation. The development and adoption of these techniques may pave the way for new innovations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...