Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(1): 61-68, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34898189

RESUMEN

Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.


Asunto(s)
Inhibidores Enzimáticos , Proteínas , Animales , Mamíferos , Fosforilación
2.
ACS Synth Biol ; 10(6): 1505-1519, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33988973

RESUMEN

The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge-the inhibition of a human drug target-into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors appear to target an allosteric site, which confers selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.


Asunto(s)
Productos Biológicos/metabolismo , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos , Productos Biológicos/química , Productos Biológicos/farmacología , Dominio Catalítico , Diseño de Fármacos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Microorganismos Modificados Genéticamente , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Terpenos/química , Terpenos/farmacología
3.
Biochemistry ; 60(4): 254-258, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450156

RESUMEN

Allosteric regulation enables dynamic adjustments to protein function that permit tight control over cellular biochemistry. Discrepancies in the allosteric systems of related proteins can thus reveal important differences in their susceptibilities to influential stimuli (e.g., allosteric ligands, mutations, or post-translational modifications). This study uses an optogenetic actuator as a tool to compare the allosteric systems of two structurally related regulatory proteins: protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It begins with an interesting observation: The fusion of a protein light switch to the allosterically influential α7 helix of PTP1B permits optical modulation of its catalytic activity, but a similar fusion to TCPTP does not. A subsequent analysis of different PTP chimeras shows that replacing regions of TCPTP with homologous regions from PTP1B can enhance photocontrol; as TCPTP becomes more "PTP1B-like", its photosensitivity increases. Interestingly, the structural changes required for photocontrol also enhance the sensitivity of TCPTP to other allosteric inputs, notably, an allosteric inhibitor and a newly reported activating mutation. Our findings indicate that the allosteric functionality of the α7 helix of PTP1B is not conserved across the PTP family and highlight residues necessary to transfer this functionality to other PTPs. More broadly, our results suggest that simple gene fusion events can strengthen allosteric communication within individual protein domains and describe an intriguing application for optogenetic actuators as structural probes-a sort of physically disruptive "ratchet"-for studying protein allostery.


Asunto(s)
Optogenética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Regulación Alostérica , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
4.
Curr Opin Biotechnol ; 66: 195-206, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053496

RESUMEN

Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.


Asunto(s)
Optogenética , Transducción de Señal , Proteínas/genética
5.
Nat Commun ; 11(1): 788, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034150

RESUMEN

Protein tyrosine phosphatases regulate a myriad of essential subcellular signaling events, yet they remain difficult to study in their native biophysical context. Here we develop a minimally disruptive optical approach to control protein tyrosine phosphatase 1B (PTP1B)-an important regulator of receptor tyrosine kinases and a therapeutic target for the treatment of diabetes, obesity, and cancer-and we use that approach to probe the intracellular function of this enzyme. Our conservative architecture for photocontrol, which consists of a protein-based light switch fused to an allosteric regulatory element, preserves the native structure, activity, and subcellular localization of PTP1B, affords changes in activity that match those elicited by post-translational modifications inside the cell, and permits experimental analyses of the molecular basis of optical modulation. Findings indicate, most strikingly, that small changes in the activity of PTP1B can cause large shifts in the phosphorylation states of its regulatory targets.


Asunto(s)
Optogenética/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo , Regulación Alostérica , Animales , Técnicas Biosensibles , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Fosforilación , Fototropinas/genética , Fototropinas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética
7.
Biochemistry ; 57(45): 6443-6451, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30289703

RESUMEN

Protein tyrosine phosphatases (PTPs) are an important class of regulatory enzymes that exhibit aberrant activities in a wide range of diseases. A detailed mapping of allosteric communication in these enzymes could, thus, reveal the structural basis of physiologically relevant-and, perhaps, therapeutically informative-perturbations (i.e., mutations, post-translational modifications, or binding events) that influence their catalytic states. This study combines detailed biophysical studies of protein tyrosine phosphatase 1B (PTP1B) with bioinformatic analyses of the PTP family to examine allosteric communication in this class of enzymes. Results of X-ray crystallography, molecular dynamics simulations, and sequence-based statistical analyses indicate that PTP1B possesses a broadly distributed allosteric network that is evolutionarily conserved across the PTP family, and findings from both kinetic studies and mutational analyses show that this network is functionally intact in sequence-diverse PTPs. The allosteric network resolved in this study reveals new sites for targeting allosteric inhibitors of PTPs and helps explain the functional influence of a diverse set of disease-associated mutations.


Asunto(s)
Evolución Molecular , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Sitio Alostérico , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares
8.
Biochemistry ; 57(40): 5886-5896, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30169954

RESUMEN

Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs have been approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids, a biologically active class of phytometabolites with largely nonpolar structures, for the development of pharmaceutically relevant PTP inhibitors. Results of nuclear magnetic resonance analyses, mutational studies, and molecular dynamics simulations indicate that abietic acid can inhibit protein tyrosine phosphatase 1B, a negative regulator of insulin signaling and an elusive drug target, by binding to its active site in a non-substrate-like manner that stabilizes the catalytically essential WPD loop in an inactive conformation; detailed kinetic studies, in turn, show that minor changes in the structures of abietane-type diterpenoids (e.g., the addition of hydrogens) can improve potency (i.e., lower IC50) by 7-fold. These findings elucidate a previously uncharacterized mechanism of diterpenoid-mediated inhibition and suggest, more broadly, that abietane-type diterpenoids are a promising source of structurally diverse-and, intriguingly, microbially synthesizable-molecules on which to base the design of new PTP-inhibiting therapeutics.


Asunto(s)
Abietanos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...