Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(24): 9901-9908, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850234

RESUMEN

The response range of an ion-selective electrode (ISE) has been described by counterion interference at the lower and Donnan failure at the upper detection limit. This approach fails when the potentiometric response at the upper detection limit exhibits an apparently super-Nernstian response, as has been reported repeatedly for H+-selective electrodes. While also observed when samples contain other anions, super-Nernstian responses at low pH are a problem in particular for samples that contain phthalate, a common component of commercial pH calibration solutions. This work shows that coextraction of H+ and a sample anion into the sensing membrane alone does not explain these super-Nernstian responses, even when membrane-internal diffusion potentials are taken into account. Instead, these super-Nernstian responses are explained by the formation of complexes between that anion and at least two protonated ionophore molecules. As demonstrated by experiments and explained with quantitative phase boundary models, the apparently super-Nernstian responses at low pH can be eliminated by restricting the molecular ratio of ionophore and ionic sites. Notably, this conclusion results in recommendations for the optimization of sensing membranes that, in some instances, will conflict with previously reported recommendations from the ionic site theory for the optimization of the lower detection limit. This mechanistic insight is key to maximizing the response range of these ionophore-based ISEs.

2.
Anal Chem ; 96(11): 4702-4708, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451778

RESUMEN

The physical delamination of the sensing membrane from underlying electrode bodies and electron conductors limits sensor lifetimes and long-term monitoring with ion-selective electrodes (ISEs). To address this problem, we developed two plasma-initiated graft polymerization methods that attach ionophore-doped polymethacrylate sensing membranes covalently to high-surface-area carbons that serve as the conducting solid contact as well as to polypropylene, poly(ethylene-co-tetrafluoroethylene), and polyurethane as the inert polymeric electrode body materials. The first strategy consists of depositing the precursor solution for the preparation of the sensing membranes onto the platform substrates with the solid contact carbon, followed by exposure to an argon plasma, which results in surface-grafting of the in situ polymerized sensing membrane. Using the second strategy, the polymeric platform substrate is pretreated with argon plasma and subsequently exposed to ambient oxygen, forming hydroperoxide groups on the surface. Those functionalities are then used for the initiation of photoinitiated graft polymerization of the sensing membrane. Attenuated total reflection-Fourier transform infrared spectroscopy, water contact angle measurements, and delamination tests confirm the covalent attachment of the in situ polymerized sensing membranes onto the polymeric substrates. Using membrane precursor solutions comprising, in addition to decyl methacrylate and a cross-linker, also 2-(diisopropylamino)ethyl methacrylate as a covalently attachable H+ ionophore and tetrakis(pentafluorophenyl)borate as ionic sites, both plasma-based fabrication methods produced electrodes that responded to pH in a Nernstian fashion, with the high selectivity expected for ionophore-based ISEs.

3.
Analyst ; 149(4): 1132-1140, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205703

RESUMEN

The pH working range of solid-contact ion-selective electrodes (ISEs) with plasticizer-free poly(decyl methacrylate) sensing membranes is shown to be expanded by covalent attachment of H+ ionophores to the polymeric membrane matrix. In situ photopolymerization not only incorporates the ionophores into the polymer backbone, but at the same time also attaches the sensing membranes covalently to the underlying inert polymer and nanographite solid contact, minimizing sensor drift and preventing failure by membrane delamination. A new pyridine-based H+ ionophore, 3-(pyridine-3-yl)propyl methacrylate, has lower basicity than trialkylamine ionophores and expands the upper detection limit. This reduces in particular the interference from hydrogen phthalate, which is a common component of commercial pH buffers. Moreover, the lower detection limit is improved by replacing the CH2CH2 spacer of previously reported dialkylaminoethyl methacrylates with a (CH2)10 spacer, which increases its basicity. Notably, for the more basic and highly cation-selective ionophore 10-(diisopropylamino)decyl methacrylate, the extent of counterion interference from hydrogen phthalate shifted the upper detection limit to lower pH by nearly one pH unit when the crosslinker concentration was decreased.

4.
Anal Chem ; 94(2): 1143-1150, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932309

RESUMEN

Solid-contact ion-selective electrodes (ISEs) with an unintentional water layer between the sensing membrane and underlying electron conductor are well known to suffer from potential drift caused by the instability of the phase boundary potential between the sensing membrane and the water layer with its uncontrolled ionic composition. The reproducibility and long-term emf stability of ISEs with a miniaturized inner filling solution comprising a hydrogel and a hydrophilic electrolyte have not been studied as thoroughly. Here, such devices are discussed with a view to electrode-to-electrode reproducibility, using both hydrophilic ion-exchange and plasticized PVC membranes, along with a hydrophilic redox buffer composed of ferrocyanide and ferricyanide to control the potential between the hydrogel and the underlying electron conductor. With plasticized PVC sensing membranes, these electrodes showed an E0 reproducibility of ±1.1 mV or better, while with hydrophilic ion-exchange membranes, this variability was slightly larger. Long-term drifts were also assessed with both membranes, and the effect of osmotic pressure on drift was shown to be insignificant for the PVC membranes and very small at most for the hydrophilic membranes.


Asunto(s)
Hidrogeles , Electrodos de Iones Selectos , Electrodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA