Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Neurol ; 78(11): 1345-1354, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570177

RESUMEN

Importance: Network hyperexcitability may contribute to cognitive dysfunction in patients with Alzheimer disease (AD). Objective: To determine the ability of the antiseizure drug levetiracetam to improve cognition in persons with AD. Design, Setting, and Participants: The Levetiracetam for Alzheimer's Disease-Associated Network Hyperexcitability (LEV-AD) study was a phase 2a randomized double-blinded placebo-controlled crossover clinical trial of 34 adults with AD that was conducted at the University of California, San Francisco, and the University of Minnesota, Twin Cities, between October 16, 2014, and July 21, 2020. Participants were adults 80 years and younger who had a Mini-Mental State Examination score of 18 points or higher and/or a Clinical Dementia Rating score of less than 2 points. Screening included overnight video electroencephalography and a 1-hour resting magnetoencephalography examination. Interventions: Group A received placebo twice daily for 4 weeks followed by a 4-week washout period, then oral levetiracetam, 125 mg, twice daily for 4 weeks. Group B received treatment using the reverse sequence. Main Outcomes and Measures: The primary outcome was the ability of levetiracetam treatment to improve executive function (measured by the National Institutes of Health Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research [NIH-EXAMINER] composite score). Secondary outcomes were cognition (measured by the Stroop Color and Word Test [Stroop] interference naming subscale and the Alzheimer's Disease Assessment Scale-Cognitive Subscale) and disability. Exploratory outcomes included performance on a virtual route learning test and scores on cognitive and functional tests among participants with epileptiform activity. Results: Of 54 adults assessed for eligibility, 11 did not meet study criteria, and 9 declined to participate. A total of 34 adults (21 women [61.8%]; mean [SD] age, 62.3 [7.7] years) with AD were enrolled and randomized (17 participants to group A and 17 participants to group B). Thirteen participants (38.2%) were categorized as having epileptiform activity. In total, 28 participants (82.4%) completed the study, 10 of whom (35.7%) had epileptiform activity. Overall, treatment with levetiracetam did not change NIH-EXAMINER composite scores (mean difference vs placebo, 0.07 points; 95% CI, -0.18 to 0.32 points; P = .55) or secondary measures. However, among participants with epileptiform activity, levetiracetam treatment improved performance on the Stroop interference naming subscale (net improvement vs placebo, 7.4 points; 95% CI, 0.2-14.7 points; P = .046) and the virtual route learning test (t = 2.36; Cohen f2 = 0.11; P = .02). There were no treatment discontinuations because of adverse events. Conclusions and Relevance: In this randomized clinical trial, levetiracetam was well tolerated and, although it did not improve the primary outcome, in prespecified analysis, levetiracetam improved performance on spatial memory and executive function tasks in patients with AD and epileptiform activity. These exploratory findings warrant further assessment of antiseizure approaches in AD. Trial Registration: ClinicalTrials.gov Identifier: NCT02002819.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Cognición/efectos de los fármacos , Levetiracetam/uso terapéutico , Convulsiones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Estudios Cruzados , Método Doble Ciego , Función Ejecutiva/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/etiología
2.
Front Hum Neurosci ; 14: 118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317952

RESUMEN

Objective: The adult brain's potential for plastic reorganization is an important mechanism for the preservation and restoration of function in patients with primary glial neoplasm. Patients with recurrent brain tumors requiring multiple interventions over time present an opportunity to examine brain reorganization. Magnetoencephalography (MEG) is a noninvasive imaging modality that can be used for motor cortical network mapping which, when performed at regular intervals, offers insight into this process of reorganization. Utilizing MEG-based motor mapping, we sought to characterize the reorganization of motor cortical networks over time in a cohort of 78 patients with recurrent glioma. Methods: MEG-based motor cortical maps were obtained by measuring event-related desynchronization (ERD) in ß-band frequency during unilateral index finger flexion. Each patient presented at our Department at least on two occasions for tumor resection due to tumor recurrence, and MEG-based motor mapping was performed as part of preoperative assessment before each surgical resection. Whole-brain activation patterns from first to second MEG scan (obtained before first and second surgery) were compared. Additionally, we calculated distances of activation peaks, which represent the location of the primary motor cortex (MC), to determine the magnitude of movement in motor eloquent areas between the first and second MEG scan. We also explored which demographic, anatomic, and pathological factors influence these shifts. Results: The whole-brain activation motor maps showed a subtle movement of the primary MC from first to second timepoint, as was confirmed by the determination of motor activation peaks. The shift of ipsilesional MC was directly correlated with a frontal-parietal tumor location (p < 0.001), presence of motor deficits (p = 0.021), and with a longer period between MEG scans (p = 0.048). Also, a disengagement of wide areas in the contralesional (ipsilateral to finger movement) hemisphere at the second time point was observed. Conclusions: MEG imaging is a sensitive method for depicting the plasticity of the motor cortical network. Although the location of the primary MC undergoes only subtle changes, appreciable shifts can occur in the setting of a stronger and longer impairment of the tumor on the MC. The ipsilateral hemisphere may serve as a reservoir for functional recovery.

3.
Sci Rep ; 9(1): 5686, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952883

RESUMEN

Accurate integration of sensory inputs and motor commands is essential to achieve successful behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we demonstrated abnormal sensorimotor integration in patients with Alzheimer's disease (AD) with an abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65-150 Hz) responses during this task. AD patients showed significantly reduced left prefrontal activity during the early phase of perturbation and increased right middle temporal activity during the later phase of perturbation, compared to controls. Activity in these brain regions significantly correlated with the behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-control network and additional recruitment of right temporal regions are significant mediators of aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Retroalimentación Sensorial/fisiología , Habla/fisiología , Estimulación Acústica/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fonación/fisiología , Percepción de la Altura Tonal/fisiología
4.
Hum Brain Mapp ; 40(4): 1082-1092, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30549134

RESUMEN

In patients with gliomas, changes in hemispheric specialization for language determined by magnetoencephalography (MEG) were analyzed to elucidate the impact of treatment and tumor recurrence on language networks. Demonstration of reorganization of language networks in these patients has significant implications on the prevention of postoperative functional loss and recovery. Whole-brain activity during an auditory verb generation task was estimated from MEG recordings in a group of 73 patients with recurrent gliomas. Hemisphere of language dominance was estimated using the language laterality index (LI), a measure derived from the task. The initial scan was performed prior to resection; patients subsequently underwent surgery and adjuvant treatment. A second scan was performed upon recurrence prior to repeat resection. The relationship between the shift in LI between scans and demographics, anatomic location, pathology, and adjuvant treatment was analyzed. Laterality shifts were observed between scans; the median percent change was 29.1% across all patients. Laterality shift magnitude and relative direction were associated with the initial position of language dominance; patients with increased lateralization experienced greater shifts than those presenting more bilateral representation. A change in LI from left or right to bilateral (or vice versa) occurred in 23.3% of patients; complete switch occurred in 5.5% of patients. Patients with tumors within the language-dominant hemisphere experienced significantly greater shifts than those with contralateral tumors. The majority of patients with glioma experience shifts in language network organization over time which correlate with the relative position of language lateralization and tumor location.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/fisiopatología , Lateralidad Funcional/fisiología , Glioma/fisiopatología , Plasticidad Neuronal/fisiología , Adolescente , Adulto , Anciano , Femenino , Humanos , Lenguaje , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/fisiopatología , Neuroimagen/métodos , Estudios Retrospectivos , Adulto Joven
5.
Brain ; 140(10): 2737-2751, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969381

RESUMEN

Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.


Asunto(s)
Afasia Progresiva Primaria/patología , Mapeo Encefálico , Encéfalo/fisiopatología , Anciano , Anciano de 80 o más Años , Afasia Progresiva Primaria/clasificación , Afasia Progresiva Primaria/diagnóstico por imagen , Atrofia/etiología , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ondas Encefálicas/fisiología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Femenino , Lateralidad Funcional , Sustancia Gris/patología , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Curva ROC
6.
Neurobiol Aging ; 52: 71-80, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28131013

RESUMEN

Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Función Ejecutiva , Retroalimentación Sensorial/fisiología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Memoria , Percepción de la Altura Tonal/fisiología , Corteza Prefrontal/fisiopatología , Reflejo/fisiología , Habla/fisiología , Conducta Verbal/fisiología , Anciano , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad
7.
Ann Neurol ; 80(6): 858-870, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27696483

RESUMEN

OBJECTIVE: Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS: We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS: Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION: Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Convulsiones/epidemiología , California/epidemiología , Estudios de Casos y Controles , Comorbilidad , Electroencefalografía , Femenino , Humanos , Incidencia , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Neuroimagen , Pruebas Neuropsicológicas , Síntomas Prodrómicos , Estudios Prospectivos
8.
Epilepsy Res ; 121: 21-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26871959

RESUMEN

OBJECTIVE: Asymmetric large-amplitude slow activity is sometimes observed on interictal electroencephalography (EEG) in epilepsy. However, few studies have examined slowing during magnetoencephalography (MEG) recordings, which are performed primarily to localize interictal spikes. Also, no prior investigations have compared the sensitivity of MEG to scalp EEG in detecting slow rhythms. METHODS: We performed a retrospective cohort study of focal epilepsy patients who received MEG followed by surgical resection at our institution. We examined MEG, simultaneous EEG, and long-term EEG recordings for prominent asymmetric slow activity (delta-range, 1-4 Hz), and evaluated post-operative seizure outcomes. RESULTS: We studied 132 patients with ≥ 1 year post-operative follow-up (mean, 3.6 years). Mean age was 27 (range, 3-68) years, and 55% of patients were male. Asymmetric large-amplitude slow wave activity was observed on interictal MEG in 21 of 132 (16%) patients. Interictal slowing lateralized to the hemisphere of resection in all but one (95%) patient. Among the 21 patients with interictal MEG slowing, 11 (52%) individuals had similarly lateralized EEG slowing, 7 patients had no EEG slowing, and 3 had bilateral symmetric EEG slowing. Meanwhile, none of the 111 patients without lateralized MEG slowing had asymmetric EEG slowing, suggesting significantly higher sensitivity of MEG versus EEG in detecting asymmetric slowing (χ(2)=63.4, p<0.001). MEG slowing was associated with shorter epilepsy duration with an odds ratio of 5.4 (1.7-17.0, 95% confidence interval). At last follow-up, 92 (70%) patients were seizure free (Engel I outcome), with no difference in seizure freedom rates between patients with (71%) or without (69%) asymmetric MEG slowing (χ(2)=0.4, p=0.99). SIGNIFICANCE: MEG has higher sensitivity than scalp EEG in detecting asymmetric slow activity in focal epilepsy, which reliably lateralizes to the epileptogenic hemisphere. Other uses of MEG beyond spike localization may further improve presurgical evaluations in epilepsy.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsias Parciales/diagnóstico , Epilepsias Parciales/fisiopatología , Lateralidad Funcional/fisiología , Magnetoencefalografía , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Adulto Joven
9.
Brain ; 138(Pt 8): 2249-62, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25981965

RESUMEN

Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiopatología , Epilepsias Parciales/terapia , Adulto , Mapeo Encefálico/métodos , Electrodos Implantados , Epilepsias Parciales/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Masculino , Resultado del Tratamiento
10.
Epilepsia ; 56(6): 949-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25921215

RESUMEN

OBJECTIVE: The efficacy of epilepsy surgery depends critically upon successful localization of the epileptogenic zone. Magnetoencephalography (MEG) enables noninvasive detection of interictal spike activity in epilepsy, which can then be localized in three dimensions using magnetic source imaging (MSI) techniques. However, the clinical value of MEG in the presurgical epilepsy evaluation is not fully understood, as studies to date are limited by either a lack of long-term seizure outcomes or small sample size. METHODS: We performed a retrospective cohort study of patients with focal epilepsy who received MEG for interictal spike mapping followed by surgical resection at our institution. RESULTS: We studied 132 surgical patients, with mean postoperative follow-up of 3.6 years (minimum 1 year). Dipole source modeling was successful in 103 patients (78%), whereas no interictal spikes were seen in others. Among patients with successful dipole modeling, MEG findings were concordant with and specific to the following: (1) the region of resection in 66% of patients, (2) invasive electrocorticography (ECoG) findings in 67% of individuals, and (3) the magnetic resonance imaging (MRI) abnormality in 74% of cases. MEG showed discordant lateralization in ~5% of cases. After surgery, 70% of all patients achieved seizure freedom (Engel class I outcome). Whereas 85% of patients with concordant and specific MEG findings became seizure-free, this outcome was achieved by only 37% of individuals with MEG findings that were nonspecific to or discordant with the region of resection (χ(2) = 26.4, p < 0.001). MEG reliability was comparable in patients with or without localized scalp electroencephalography (EEG), and overall, localizing MEG findings predicted seizure freedom with an odds ratio of 5.11 (95% confidence interval [CI] 2.23-11.8). SIGNIFICANCE: MEG is a valuable tool for noninvasive interictal spike mapping in epilepsy surgery, including patients with nonlocalized findings receiving long-term EEG monitoring, and localization of the epileptogenic zone using MEG is associated with improved seizure outcomes.


Asunto(s)
Ondas Encefálicas/fisiología , Magnetoencefalografía , Convulsiones/diagnóstico , Convulsiones/patología , Adulto , Distribución de Chi-Cuadrado , Estudios de Cohortes , Electroencefalografía , Epilepsia/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Resultado del Tratamiento
11.
Neuroimage Clin ; 5: 385-95, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25180158

RESUMEN

Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer's disease (AD), cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum--22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD) and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI) to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Vías Nerviosas/fisiopatología , Anciano , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Procesamiento de Señales Asistido por Computador
12.
Neuroimage ; 82: 260-72, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23702420

RESUMEN

OBJECTIVE: Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS. METHODS: Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared. RESULTS: nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects. CONCLUSION: Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions.


Asunto(s)
Mapeo Encefálico/métodos , Vías Nerviosas/fisiopatología , Habla/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Neoplasias Encefálicas/complicaciones , Corteza Cerebral/fisiopatología , Femenino , Humanos , Lenguaje , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Trastornos del Habla/etiología , Trastornos del Habla/fisiopatología , Adulto Joven
13.
J Neurosurg ; 118(6): 1306-16, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23600939

RESUMEN

OBJECT: Traumatic brain injury (TBI) is one of the leading causes of morbidity worldwide. One mechanism by which blunt head trauma may disrupt normal cognition and behavior is through alteration of functional connectivity between brain regions. In this pilot study, the authors applied a rapid automated resting state magnetoencephalography (MEG) imaging technique suitable for routine clinical use to test the hypothesis that there is decreased functional connectivity in patients with TBI compared with matched controls, even in cases of mild TBI. Furthermore, they posit that these abnormal reductions in MEG functional connectivity can be detected even in TBI patients without specific evidence of traumatic lesions on 3-T MR images. Finally, they hypothesize that the reductions of functional connectivity can improve over time across serial MEG scans during recovery from TBI. METHODS: Magnetoencephalography maps of functional connectivity in the alpha (8- to 12-Hz) band from 21 patients who sustained a TBI were compared with those from 18 age- and sex-matched controls. Regions of altered functional connectivity in each patient were detected in automated fashion through atlas-based registration to the control database. The extent of reduced functional connectivity in the patient group was tested for correlations with clinical characteristics of the injury as well as with findings on 3-T MRI. Finally, the authors compared initial connectivity maps with 2-year follow-up functional connectivity in a subgroup of 5 patients with TBI. RESULTS: Fourteen male and 7 female patients (17-53 years old, median 29 years) were enrolled. By Glasgow Coma Scale (GCS) criteria, 11 patients had mild, 1 had moderate, and 3 had severe TBI, and 6 had no GCS score recorded. On 3-T MRI, 16 patients had abnormal findings attributable to the trauma and 5 had findings in the normal range. As a group, the patients with TBI had significantly lower functional connectivity than controls (p < 0.01). Three of the 5 patients with normal findings on 3-T MRI showed regions of abnormally reduced MEG functional connectivity. No significant correlations were seen between extent of functional disconnection and injury severity or posttraumatic symptoms (p > 0.05). In the subgroup undergoing 2-year follow-up, the second MEG scan demonstrated a significantly lower percentage of voxels with decreased connectivity (p < 0.05) than the initial MEG scan. CONCLUSIONS: A rapid automated resting-state MEG imaging technique demonstrates abnormally decreased functional connectivity that may persist for years after TBI, including cases classified as "mild" by GCS criteria. Disrupted MEG connectivity can be detected even in some patients with normal findings on 3-T MRI. Analysis of follow-up MEG scans in a subgroup of patients shows that, over time, the abnormally reduced connectivity can improve, suggesting neuroplasticity during the recovery from TBI. Resting state MEG deserves further investigation as a prognostic and predictive biomarker for TBI.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Lesiones Encefálicas/fisiopatología , Encéfalo/fisiopatología , Magnetoencefalografía , Recuperación de la Función/fisiología , Descanso/fisiología , Accidentes , Adolescente , Adulto , Encéfalo/patología , Lesiones Encefálicas/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Escala de Coma de Glasgow , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Proyectos Piloto , Valor Predictivo de las Pruebas , Pronóstico , Adulto Joven
14.
Neurosurgery ; 71(5): 1012-22, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22895403

RESUMEN

BACKGROUND: The removal of brain tumors in perieloquent or eloquent cortex risks causing new neurological deficits in patients. The assessment of the functionality of perilesional tissue is essential to avoid postoperative neurological morbidity. OBJECTIVE: To evaluate preoperative magnetoencephalography-based functional connectivity as a predictor of short- and medium-term neurological outcome after removal of gliomas in perieloquent and eloquent areas. METHODS: Resting-state whole-brain magnetoencephalography recordings were obtained from 79 consecutive subjects with focal brain gliomas near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering. The mean imaginary coherence between voxels in and around brain tumors was compared with contralesional voxels and used as an index of their functional connectivity with the rest of the brain. The connectivity values of the tissue resected during surgery were correlated with the early (1 week postoperatively) and medium-term (6 months postoperatively) neurological morbidity. RESULTS: Patients undergoing resection of tumors with decreased functional connectivity had a 29% rate of a new neurological deficit 1 week after surgery and a 0% rate at 6-month follow-up. Patients undergoing resection of tumors with increased functional connectivity had a 60% rate of a new deficit at 1 week and a 25% rate at 6 months. CONCLUSION: Magnetoencephalography connectivity analysis gives a valuable preoperative evaluation of the functionality of the tissue surrounding tumors in perieloquent and eloquent areas. These data may be used to optimize preoperative patient counseling and surgical strategy.


Asunto(s)
Neoplasias Encefálicas/cirugía , Encéfalo/patología , Glioma/cirugía , Magnetoencefalografía , Complicaciones Posoperatorias/diagnóstico , Descanso , Adulto , Anciano , Mapeo Encefálico , Neoplasias Encefálicas/mortalidad , Estimulación Eléctrica , Femenino , Glioma/mortalidad , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/patología , Periodo Posoperatorio , Estudios Retrospectivos , Estadísticas no Paramétricas , Adulto Joven
15.
J Neurosurg ; 117(2): 354-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22702484

RESUMEN

OBJECT: Direct cortical stimulation (DCS) is the gold-standard technique for motor mapping during craniotomy. However, preoperative noninvasive motor mapping is becoming increasingly accurate. Two such noninvasive modalities are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) imaging. While MEG imaging has already been extensively validated as an accurate modality of noninvasive motor mapping, TMS is less well studied. In this study, the authors compared the accuracy of TMS to both DCS and MEG imaging. METHODS: Patients with tumors in proximity to primary motor cortex underwent preoperative TMS and MEG imaging for motor mapping. The patients subsequently underwent motor mapping via intraoperative DCS. The loci of maximal response were recorded from each modality and compared. Motor strength was assessed at 3 months postoperatively. RESULTS: Transcranial magnetic stimulation and MEG imaging were performed on 24 patients. Intraoperative DCS yielded 8 positive motor sites in 5 patients. The median distance ± SEM between TMS and DCS motor sites was 2.13 ± 0.29 mm, and between TMS and MEG imaging motor sites was 4.71 ± 1.08 mm. In no patients did DCS motor mapping reveal a motor site that was unrecognized by TMS. Three of 24 patients developed new, early neurological deficit in the form of upper-extremity paresis. At the 3-month follow-up evaluation, 2 of these patients were significantly improved, experiencing difficulty only with fine motor tasks; the remaining patient had improvement to 4/5 strength. There were no deaths over the course of the study. CONCLUSIONS: Maps of the motor system generated with TMS correlate well with those generated by both MEG imaging and DCS. Negative TMS mapping also correlates with negative DCS mapping. Navigated TMS is an accurate modality for noninvasively generating preoperative motor maps.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Corteza Cerebral/fisiopatología , Corteza Cerebral/cirugía , Craneotomía , Magnetoencefalografía , Corteza Motora/fisiopatología , Corteza Motora/cirugía , Paresia/diagnóstico , Paresia/fisiopatología , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/fisiopatología , Cuidados Preoperatorios/métodos , Procesamiento de Señales Asistido por Computador , Corteza Somatosensorial/fisiopatología , Corteza Somatosensorial/cirugía , Estimulación Magnética Transcraneal , Adulto , Anciano , Sincronización Cortical/fisiología , Dominancia Cerebral/fisiología , Estimulación Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Destreza Motora/fisiología , Estudios Prospectivos , Programas Informáticos , Adulto Joven
16.
Ann Neurol ; 69(3): 521-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21400562

RESUMEN

OBJECTIVE: Resection of brain tumors adjacent to eloquent areas represents a challenge in neurosurgery. If maximal resection is desired without inducing postoperative neurological deficits, a detailed knowledge of the functional topography in and around the tumor is crucial. The aim of the present work is to evaluate the value of preoperative magnetoencephalography (MEG) imaging of functional connectivity to predict the results of intraoperative electrical stimulation (IES) mapping, the clinical gold standard for neurosurgical localization of functional areas. METHODS: Resting-state whole-cortex MEG recordings were obtained from 57 consecutive subjects with focal brain tumors near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering algorithms, and the mean imaginary coherence between the rest of the brain and voxels in and around brain tumors were compared to the mean imaginary coherence between the rest of the brain and contralesional voxels as an index of functional connectivity. IES mapping was performed in all subjects. The cortical connectivity pattern near the tumor was compared to the IES results. RESULTS: Maps with decreased resting-state functional connectivity in the entire tumor area had a negative predictive value of 100% for absence of eloquent cortex during IES. Maps showing increased resting-state functional connectivity within the tumor area had a positive predictive value of 64% for finding language, motor, or sensory cortical sites during IES mapping. INTERPRETATION: Preoperative resting state MEG connectivity analysis is a useful noninvasive tool to evaluate the functionality of the tissue surrounding tumors within eloquent areas, and could potentially contribute to surgical planning and patient counseling.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Glioma/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Anciano , Mapeo Encefálico , Neoplasias Encefálicas/patología , Corteza Cerebral/patología , Estimulación Eléctrica , Femenino , Glioma/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Periodo Preoperatorio , Estadísticas no Paramétricas
17.
Ann Neurol ; 63(2): 193-203, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17894381

RESUMEN

OBJECTIVE: The spatial distribution of functional connectivity between brain areas and the disturbance introduced by focal brain lesions are poorly understood. Based on the rationale that damaged brain tissue is disconnected from the physiological interactions among healthy areas, this study aimed to map the functionality of brain areas according to their connectivity with other areas. METHODS: Magnetoencephalography recordings of spontaneous cortical activity during resting state were obtained from 15 consecutive patients with focal brain lesions and from 14 healthy control subjects. Neural activity in the brain was estimated using an adaptive spatial filtering technique. The mean imaginary coherence between brain voxels was then calculated as an index of functional connectivity. RESULTS: Imaginary coherence was greatest in the alpha frequency range corresponding to the human cortical idling rhythm. In healthy subjects, functionally critical brain areas such as the somatosensory and language cortices had the highest alpha coherence. When compared with healthy control subjects, all lesion patients had diffuse or scattered brain areas with decreased alpha coherence. Patients with lesion-induced neurological deficits displayed decreased connectivity estimates in the corresponding brain area compared with intact contralateral regions. In tumor patients without preoperative neurological deficits, brain areas showing decreased coherence could be surgically resected without the occurrence of postoperative deficits. INTERPRETATION: Resting state coherence measured with magnetoencephalography is capable of mapping the functional connectivity of the brain, and can therefore offer valuable information for use in planning resective surgeries in patients with brain lesions, as well as investigations into structural-functional relationships in healthy subjects.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Corteza Cerebral/fisiopatología , Magnetoencefalografía/métodos , Vías Nerviosas/fisiopatología , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/patología , Corteza Cerebral/patología , Potenciales Evocados/fisiología , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Procedimientos Neuroquirúrgicos/normas , Valor Predictivo de las Pruebas , Cuidados Preoperatorios/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...