Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
3.
Sci Rep ; 13(1): 18370, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884618

RESUMEN

Therapeutic antibody discovery often relies on in-vitro display methods to identify lead candidates. Assessing selected output diversity traditionally involves random colony picking and Sanger sequencing, which has limitations. Next-generation sequencing (NGS) offers a cost-effective solution with increased read depth, allowing a comprehensive understanding of diversity. Our study establishes NGS guidelines for antibody drug discovery, demonstrating its advantages in expanding the number of unique HCDR3 clusters, broadening the number of high affinity antibodies, expanding the total number of antibodies recognizing different epitopes, and improving lead prioritization. Surprisingly, our investigation into the correlation between NGS-derived frequencies of CDRs and affinity revealed a lack of association, although this limitation could be moderately mitigated by leveraging NGS clustering, enrichment and/or relative abundance across different regions to enhance lead prioritization. This study highlights NGS benefits, offering insights, recommendations, and the most effective approach to leverage NGS in therapeutic antibody discovery.


Asunto(s)
Anticuerpos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anticuerpos/genética , Epítopos
4.
EC Microbiol ; 18(4): 1-12, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35695877

RESUMEN

Brilacidin (PMX-30063), a non-peptide defensin-mimetic small molecule, inhibits SARS-CoV-2 viral infection but the anti-viral mechanism is not defined. Here we determined its effect on the specific step of the viral life cycle. Brilacidin blocked SARS-CoV-2 infection but had no effect after viral entry. Brilacidin inhibited pseudotyped SARS-CoV-2 viruses expressing spike proteins from the P.1 Brazil strain and the B.1.1.7 UK strain. Brilacidin affected viral attachment in hACE2-dependent and independent manners depending on the concentrations. The inhibitory effect on viral entry was not mediated through blocking the binding of either the spike receptor-binding domain or the spike S1 protein to hACE2 proteins. Taken together, brilacidin inhibits SARS-CoV-2 infection by blocking viral entry and is active against SARS-CoV-2 variants.

6.
Nat Commun ; 13(1): 462, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075126

RESUMEN

As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos/inmunología , COVID-19/epidemiología , COVID-19/virología , Chlorocebus aethiops , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Pruebas de Neutralización/métodos , Pandemias , Biblioteca de Péptidos , Unión Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
7.
Nat Immunol ; 22(12): 1515-1523, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811542

RESUMEN

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacuna BCG/administración & dosificación , Inmunogenicidad Vacunal , Inmunoglobulina M/sangre , Mycobacterium tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunación , Administración Intravenosa , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Macaca mulatta , Mycobacterium tuberculosis/patogenicidad , Factores de Tiempo , Tuberculosis/inmunología , Tuberculosis/microbiología
8.
J Immunol Methods ; 499: 113165, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634317

RESUMEN

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Pruebas con Sangre Seca , Anticuerpos Antivirales/inmunología , Sitios de Unión , COVID-19/sangre , COVID-19/inmunología , Humanos , Vacunación
10.
J Infect Dis ; 224(8): 1345-1356, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34387310

RESUMEN

BACKGROUND: We studied risk factors, antibodies, and symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a diverse, ambulatory population. METHODS: A prospective cohort (n = 831) previously undiagnosed with SARS-CoV-2 infection underwent serial testing (SARS-CoV-2 polymerase chain reaction, immunoglobulin G [IgG]) for 6 months. RESULTS: Ninety-three participants (11.2%) tested SARS-CoV-2-positive: 14 (15.1%) asymptomatic, 24 (25.8%) severely symptomatic. Healthcare workers (n = 548) were more likely to become infected (14.2% vs 5.3%; adjusted odds ratio, 2.1; 95% confidence interval, 1.4-3.3) and severely symptomatic (29.5% vs 6.7%). IgG antibodies were detected after 79% of asymptomatic infections, 89% with mild-moderate symptoms, and 96% with severe symptoms. IgG trajectories after asymptomatic infections (slow increases) differed from symptomatic infections (early peaks within 2 months). Most participants (92%) had persistent IgG responses (median 171 days). In multivariable models, IgG titers were positively associated with symptom severity, certain comorbidities, and hospital work. Dyspnea and neurologic changes (including altered smell/taste) lasted ≥ 120 days in ≥ 10% of affected participants. Prolonged symptoms (frequently more severe) corresponded to higher antibody levels. CONCLUSIONS: In a prospective, ethnically diverse cohort, symptom severity correlated with the magnitude and trajectory of IgG production. Symptoms frequently persisted for many months after infection.Clinical Trials Registration. NCT04336215.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Adulto , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas/epidemiología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/transmisión , Comorbilidad , Femenino , Humanos , Inmunoglobulina G/inmunología , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2/inmunología , Adulto Joven
11.
Viruses ; 13(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206990

RESUMEN

Innate immunity during acute infection plays a critical role in the disease severity of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and is likely to contribute to COVID-19 disease outcomes. Defensins are highly abundant innate immune factors in neutrophils and epithelial cells, including intestinal Paneth cells, and exhibit antimicrobial and immune-modulatory activities. In this study, we investigated the effects of human α- and ß-defensins and RC101, a θ-defensin analog, on SARS-CoV-2 infection. We found that human neutrophil peptides (HNPs) 1-3, human defensin (HD) 5 and RC101 exhibited potent antiviral activity against pseudotyped viruses expressing SARS-CoV-2 spike proteins. HNP4 and HD6 had weak anti-SARS-CoV-2 activity, whereas human ß-defensins (HBD2, HBD5 and HBD6) had no effect. HNP1, HD5 and RC101 also inhibited infection by replication-competent SARS-CoV-2 viruses and SARS-CoV-2 variants. Pretreatment of cells with HNP1, HD5 or RC101 provided some protection against viral infection. These defensins did not have an effect when provided post-infection, indicating their effect was directed towards viral entry. Indeed, HNP1 inhibited viral fusion but not the binding of the spike receptor-binding domain to hACE2. The anti-SARS-CoV-2 effect of defensins was influenced by the structure of the peptides, as linear unstructured forms of HNP1 and HD5 lost their antiviral function. Pro-HD5, the precursor of HD5, did not block infection by SARS-CoV-2. High virus titers overcame the effect of low levels of HNP1, indicating that defensins act on the virion. HNP1, HD5 and RC101 also blocked viral infection of intestinal and lung epithelial cells. The protective effects of defensins reported here suggest that they may be useful additives to the antivirus arsenal and should be thoroughly studied.


Asunto(s)
Defensinas/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Células A549 , Células CACO-2 , Defensinas/clasificación , Células Epiteliales/virología , Células HEK293 , Células HeLa , Humanos , SARS-CoV-2/fisiología
12.
J Immunol ; 207(2): 436-448, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34215655

RESUMEN

Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via ß2-gp1 (ß2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/inmunología , Muromonab-CD3/inmunología , Fosfatidilserinas/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Complejo CD3/inmunología , Línea Celular , Células HEK293 , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos/inmunología
13.
medRxiv ; 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34282427

RESUMEN

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and COVID-19 vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.

14.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064066

RESUMEN

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.


Asunto(s)
VIH/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/fisiología , Internalización del Virus , Células CACO-2 , Línea Celular , Vectores Genéticos , Células HEK293 , Humanos , Plásmidos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Transfección , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo
15.
medRxiv ; 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33880486

RESUMEN

Much is to be learned about the interface between immune responses to SARS-CoV-2 infection and vaccination. We monitored immune responses specific to SARS-CoV-2 Spike Receptor-Binding-Domain (RBD) in convalescent individuals for eight months after infection diagnosis and following vaccination. Over time, neutralizing antibody responses, which are predominantly RBD specific, generally decreased, while RBD-specific memory B cells persisted. RBD-specific antibody and B cell responses to vaccination were more vigorous than those elicited by infection in the same subjects or by vaccination in infection-naïve comparators. Notably, the frequencies of double negative B memory cells, which are dysfunctional and potentially pathogenic, increased in the convalescent subjects over time. Unexpectedly, this effect was reversed by vaccination. Our work identifies a novel aspect of immune dysfunction in mild/moderate COVID-19, supports the practice of offering SARS-CoV-2 vaccination regardless of infection history, and provides a potential mechanistic explanation for the vaccination-induced reduction of "Long-COVID" symptoms.

16.
Sci Rep ; 10(1): 13944, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811861

RESUMEN

An accurate urine test for diverse populations with active tuberculosis could be transformative for preventing TB deaths. Urinary liporabinomannan (LAM) testing has been previously restricted to HIV co-infected TB patients. In this study we evaluate urinary LAM in HIV negative, pediatric and adult, pulmonary and extrapulmonary tuberculosis patients. We measured 430 microbiologically confirmed pretreatment tuberculosis patients and controls from Peru, Guinea Bissau, Venezuela, Uganda and the United States using three monoclonal antibodies, MoAb1, CS35, and A194, which recognize distinct LAM epitopes, a one-sided immunoassay, and blinded cohorts. We evaluated sources of assay variability and comorbidities (HIV and diabetes). All antibodies successfully discriminated TB positive from TB negative patients. ROAUC from the average of three antibodies' responses was 0.90; 95% CI 0.87-0.93, 90% sensitivity, 73.5% specificity (80 pg/mL). MoAb1, recognizing the 5-methylthio-D-xylofuranose(MTX)-mannose(Man) cap epitope, performed the best, was less influenced by glycosuria and identified culture positive pediatric (N = 19) and extrapulmonary (N = 24) patients with high accuracy (ROAUC 0.87, 95% CI 0.77-0.98, 0.90 sensitivity 0.80 specificity at 80 pg/mL; ROAUC = 0.96, 95% CI 0.92-0.99, 96% sensitivity, 80% specificity at 82 pg/mL, respectively). The MoAb1 antibody, recognizing the MTX-Man cap epitope, is a novel analyte for active TB detection in pediatric and extrapulmonary disease.


Asunto(s)
Lipopolisacáridos/análisis , Tuberculosis/diagnóstico , Tuberculosis/inmunología , Adulto , Coinfección/orina , Epítopos/inmunología , Femenino , Guinea Bissau , Infecciones por VIH/orina , Humanos , Inmunoensayo/métodos , Pruebas Inmunológicas/métodos , Lipopolisacáridos/inmunología , Lipopolisacáridos/orina , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Perú , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Tuberculosis/clasificación , Tuberculosis Pulmonar/microbiología , Uganda , Estados Unidos , Venezuela
17.
J Clin Microbiol ; 56(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30257899

RESUMEN

The only currently commercialized point-of-care assay for tuberculosis (TB) that measures lipoarabinomannan (LAM) in urine (Alere LF-LAM) has insufficient sensitivity. We evaluated the potential of 100 novel monoclonal antibody pairs targeting a variety of LAM epitopes on a sensitive electrochemiluminescence platform to improve the diagnostic accuracy. In the screening, many antibody pairs showed high reactivity to purified LAM but performed poorly at detecting urinary LAM in clinical samples, suggesting differences in antigen structure and immunoreactivity of the different LAM sources. The 12 best antibody pairs from the screening were tested in a retrospective case-control study with urine samples from 75 adults with presumptive TB. The best antibody pair reached femtomolar analytical sensitivity for LAM detection and an overall clinical sensitivity of 93% (confidence interval [CI], 80% to 97%) and specificity of 97% (CI, 85% to 100%). Importantly, in HIV-negative subjects positive for TB by sputum smear microscopy, the test achieved a sensitivity of 80% (CI, 55% to 93%). This compares to an overall sensitivity of 33% (CI, 20% to 48%) of the Alere LF-LAM and a sensitivity of 13% (CI, 4% to 38%) in HIV-negative subjects in the same sample set. The capture antibody targets a unique 5-methylthio-d-xylofuranose (MTX)-dependent epitope in LAM that is specific to the Mycobacterium tuberculosis complex and shows no cross-reactivity with fast-growing mycobacteria or other bacteria. The present study provides evidence that improved assay methods and reagents lead to increased diagnostic accuracy. The results of this work have informed the development of a sensitive and specific novel LAM point-of-care assay with the aim to meet the WHO's performance target for TB diagnosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Pruebas Diagnósticas de Rutina/métodos , Inmunoensayo , Lipopolisacáridos/inmunología , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis/diagnóstico , Infecciones Oportunistas Relacionadas con el SIDA/diagnóstico , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Adulto , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/química , Estudios de Casos y Controles , Pruebas Diagnósticas de Rutina/normas , Epítopos/inmunología , Femenino , Humanos , Lipopolisacáridos/química , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Sistemas de Atención de Punto , Estudios Retrospectivos , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis/microbiología , Organización Mundial de la Salud
18.
Tuberculosis (Edinb) ; 111: 178-187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30029905

RESUMEN

TB diagnosis and treatment monitoring in resource limited regions rely heavily on serial sputum smear microscopy and bacterial culture. These microbiological methods are time-consuming, expensive and lack adequate sensitivity. The WHO states that improved TB diagnosis and treatment is imperative to achieve an end to the TB epidemic by 2030. Commercially available lipoarabinomannan (LAM) detection tools perform at low sensitivity that are highly dependent on the underlying immunological status of the patient; those with advanced HIV infection perform well. In this study, we have applied two novel strategies towards the sensitive diagnosis of TB infection based on LAM: Capture ELISA to detect LAM in paired urine and serum samples using murine and human monoclonal antibodies, essentially relying on LAM as an 'immuno-marker'; and, secondly, detection of α-d-arabinofuranose and tuberculostearic acid (TBSA)- 'chemical-markers' unique to mycobacterial cell wall polysaccharides/lipoglycans by our recently developed gas chromatography/mass spectrometry (GC/MS) method. Blinded urine specimens, with microbiologically confirmed active pulmonary TB or non TB (HIV+/HIV-) were tested by the aforementioned assays. LAM in patient urine was detected in a concentration range of 3-28 ng/mL based on GC/MS detection of the two LAM-surrogates, d-arabinose and tuberculostearic acid (TBSA) correctly classifying TB status with sensitivity > 99% and specificity = 84%. The ELISA assay had high sensitivity (98%) and specificity (92%) and the results were in agreement with GC/MS analysis. Both tests performed well in their present form particularly for HIV-negative/TB-positive urine samples. Among the HIV+/TB+ samples, 52% were found to have >10 ng/mL urinary LAM. The detected amounts of LAM present in the urine samples also appears to be associated with the gradation of the sputum smear, linking elevated LAM levels with higher mycobacterial burden (odds ratio = 1.08-1.43; p = 0.002). In this small set, ELISA was also applied to parallel serum samples confirming that serum could be an additional reservoir for developing a LAM-based immunoassay for diagnosis of TB.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Coinfección , Ensayo de Inmunoadsorción Enzimática/métodos , Cromatografía de Gases y Espectrometría de Masas , Infecciones por VIH/diagnóstico , Lipopolisacáridos/sangre , Lipopolisacáridos/orina , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/orina , Especificidad de Anticuerpos , Biomarcadores/sangre , Biomarcadores/orina , Infecciones por VIH/sangre , Infecciones por VIH/orina , Humanos , Lipopolisacáridos/inmunología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología , Urinálisis
19.
J Immunol ; 200(9): 3053-3066, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610143

RESUMEN

Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1-coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Lipopolisacáridos/inmunología , Mycobacterium tuberculosis/inmunología , Animales , Mapeo Epitopo , Humanos , Ratones
20.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237828

RESUMEN

The subtype C HIV-1 isolate MW965.26 is a highly neutralization-sensitive tier 1a primary isolate that is widely used in vaccine studies, but the basis for the sensitive neutralization phenotype of this isolate is not known. Substituting the MW965.26 V1/V2 domain into a neutralization-sensitive SF162 Env clone resulted in high resistance to standard anti-V3 monoclonal antibodies, demonstrating that this region possesses strong masking activity in a standard Env backbone and indicating that determinants elsewhere in MW965.26 Env are responsible for its unusual neutralization sensitivity. Key determinants for this phenotype were mapped by generating chimeric Envs between MW965.26 Env and a typical resistant Env clone, the consensus C (ConC) clone, and localized to two residues, Cys384 in the C3 domain and Asn502 in the C5 domain. Substituting the sensitizing mutations Y384C and K502N at these positions into several resistant primary Envs resulted in conversion to neutralization-sensitive phenotypes, demonstrating the generalizability of this effect. In contrast to the sensitizing effects of these substitutions on normally masked epitopes, these mutations reduced the sensitivity of VRC01-like epitopes overlapping the CD4-binding domain, while they had no effect on several other classes of broadly neutralizing epitopes, including members of several lineages of V2-dependent quaternary epitopes and representatives of N332 glycan-dependent epitopes (PGT121) and quaternary, cleavage-dependent epitopes centered at the gp41-gp120 interface on intact HIV-1 Env trimers (PGT151). These results identify novel substitutions in gp120 that regulate the expression of alternative conformations of Env and differentially affect the exposure of different classes of epitopes, thereby influencing the neutralization phenotype of primary HIV-1 isolates.IMPORTANCE A better understanding of the mechanisms that determine the wide range of neutralization sensitivity of circulating primary HIV-1 isolates would provide important information about the natural structural and conformational diversity of HIV-1 Env and how this affects the neutralization phenotype. A useful way of studying this is to determine the molecular basis for the unusually high neutralization sensitivities of the limited number of available tier 1a viruses. This study localized the neutralization sensitivity of MW965.26, an extremely sensitive subtype C-derived primary isolate, to two rare substitutions in the C3 and C5 domains and demonstrated that the sequences at these positions differentially affect the presentation of epitopes recognized by different classes of standard and conformation-dependent broadly neutralizing antibodies. These results provide novel insight into how these regions regulate the neutralization phenotype and provide tools for controlling the Env conformation that could have applications both for structural studies and in vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Genes env/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Sustitución de Medicamentos , Epítopos/genética , Epítopos/inmunología , Genes env/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteínas gp160 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Técnicas In Vitro , Mutación , Pruebas de Neutralización , Fenotipo , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...