Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Insect Physiol ; 146: 104501, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921838

RESUMEN

Low temperatures associated with winter can limit the survival of organisms, especially ectotherms whose body temperature is similar to their environment. However, there is a gap in understanding how overwintering may vary among groups of species that interact closely, such as multiple parasitoid species that attack the same host insect. Here, we investigate cold tolerance and diapause phenotypes in three endoparasitoid wasps of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae): Utetes canaliculatus, Diachasma alloeum, and Diachasmimorpha mellea (Hymenoptera: Braconidae). Using a combination of respirometry and eclosion tracking, we found that all three wasp species exhibited the same three diapause duration phenotypes as the fly host. Weak (short duration) diapause was rare, with <5 % of all three wasp species prematurely terminating diapause at 21 °C. Most D.mellea (93 %) entered a more intense (longer duration) diapause that did not terminate within 100 d at this warm temperature. The majority of U.canaliculatus (92 %) and D. alloeum (72 %) averted diapause (non-diapause) at 21 °C. There was limited interspecific variation in acute cold tolerance among the three wasp species: wasps and flies had similarly high survival (>87 %) following exposure to extreme low temperatures (-20 °C) as long as their body fluids did not freeze. The three wasp species also displayed little interspecific variation in survival following prolonged exposure to mild chilling of 8 or more weeks at 4 °C. Our study thus documents a remarkable conservation of cold tolerance and diapause phenotypes within and across trophic levels.


Asunto(s)
Diapausa de Insecto , Tephritidae , Avispas , Animales , Avispas/genética , Larva , Frío , Tephritidae/genética
2.
Mol Ecol ; 31(15): 4031-4049, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33786930

RESUMEN

Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.


Asunto(s)
Diapausa , Tephritidae , Animales , Flujo Génico , Especiación Genética , Hibridación Genética , Aislamiento Reproductivo , Tephritidae/genética
3.
J Evol Biol ; 35(1): 146-163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670006

RESUMEN

Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.


Asunto(s)
Crataegus , Diapausa , Rasgos de la Historia de Vida , Tephritidae , Animales , Crataegus/genética , Desequilibrio de Ligamiento , Tephritidae/genética
4.
Am Nat ; 197(6): 732-739, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33989147

RESUMEN

AbstractThe role of divergent selection between alternative environments in promoting reproductive isolation (RI) between lineages is well recognized. However, most studies view each divergent environment as homogenous, thereby overlooking the potential role within-environment variation plays in RI between differentiating lineages. Here, we test the importance of microenvironmental variation in RI by using individual trees of two host plants, each harboring locally adapted populations of the cynipid wasp Belonocnema treatae. We compared the fitness surrogate (survival) of offspring from hybrid crosses with resident crosses across individual trees on each of two primary host plants, Quercus virginiana and Q. geminata. We found evidence of weak hybrid inviability between host-associated lineages of B. treatae despite strong genomic differentiation. However, averaging across environments masked great variation in hybrid fitness on individual trees, where hybrids performed worse than, equal to, or better than residents. Thus, considering the environmental context of hybridization is critical to improving the predictability of divergence under variable selection.


Asunto(s)
Hibridación Genética , Quercus , Aislamiento Reproductivo , Avispas , Animales , Herbivoria , Interacciones Huésped-Parásitos/fisiología , Quercus/genética , Avispas/genética
5.
Evolution ; 75(2): 476-489, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33330984

RESUMEN

Immigrant inviability can contribute to reproductive isolation (RI) during ecological speciation by reducing the survival of immigrants in non-native environments. However, studies that assess the fitness consequence of immigrants moving from native to non-native environments typically fail to explore the potential role of concomitant reductions in immigrant fecundity despite recent evidence suggesting its prominent role during local adaptation. Here, we evaluate the directionality and magnitude of both immigrant viability and fecundity to RI in a host-specific gall-forming wasp, Belonocnema treatae. Using reciprocal transplant experiments replicated across sites, we measure immigrant viability and fecundity by comparing differences in the incidence of gall formation (viability) and predicted the number of eggs per female (fecundity) between residents and immigrants in each of two host-plant environments. Reduced immigrant viability was found in one host environment while reduced immigrant fecundity was found in the other. Such habitat-dependent barriers resulted in asymmetric RI between populations. By surveying recent literature on local adaptation, we find that asymmetry in immigrant viability and fecundity are widespread across disparate taxa, which highlights the need to combine estimates of both common and overlooked barriers in cases of potential bi-directional gene flow to create a more comprehensive view of the evolution of RI.


Asunto(s)
Aislamiento Reproductivo , Avispas , Animales , Femenino , Fertilidad , Masculino , Quercus
6.
Ecol Evol ; 10(23): 12727-12744, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304490

RESUMEN

An important criterion for understanding speciation is the geographic context of population divergence. Three major modes of allopatric, parapatric, and sympatric speciation define the extent of spatial overlap and gene flow between diverging populations. However, mixed modes of speciation are also possible, whereby populations experience periods of allopatry, parapatry, and/or sympatry at different times as they diverge. Here, we report clinal patterns of variation for 21 nuclear-encoded microsatellites and a wing spot phenotype for cherry-infesting Rhagoletis (Diptera: Tephritidae) across North America consistent with these flies having initially diverged in parapatry followed by a period of allopatric differentiation in the early Holocene. However, mitochondrial DNA (mtDNA) displays a different pattern; cherry flies at the ends of the clines in the eastern USA and Pacific Northwest share identical haplotypes, while centrally located populations in the southwestern USA and Mexico possess a different haplotype. We hypothesize that the mitochondrial difference could be due to lineage sorting but more likely reflects a selective sweep of a favorable mtDNA variant or the spread of an endosymbiont. The estimated divergence time for mtDNA suggests possible past allopatry, secondary contact, and subsequent isolation between USA and Mexican fly populations initiated before the Wisconsin glaciation. Thus, the current genetics of cherry flies may involve different mixed modes of divergence occurring in different portions of the fly's range. We discuss the need for additional DNA sequencing and quantification of prezygotic and postzygotic reproductive isolation to verify the multiple mixed-mode hypothesis for cherry flies and draw parallels from other systems to assess the generality that speciation may commonly involve complex biogeographies of varying combinations of allopatric, parapatric, and sympatric divergence.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190534, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32654640

RESUMEN

Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis. The generality of this result is placed in the context of other similar systems. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Asunto(s)
Especiación Genética , Genoma de los Insectos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Aislamiento Reproductivo , Tephritidae/fisiología , Animales , Arándanos Azules (Planta) , Crataegus , Cadena Alimentaria , Herbivoria , Malus , Michigan , Oviposición , Tephritidae/genética
8.
Evolution ; 74(1): 156-168, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31729753

RESUMEN

Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.


Asunto(s)
Crataegus , Herbivoria , Malus , Aislamiento Reproductivo , Simpatría , Tephritidae/fisiología , Animales , Especies Introducidas , Washingtón
9.
Biol Lett ; 15(12): 20190572, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31847747

RESUMEN

Phenological differences between host plants can promote temporal isolation among host-associated populations of insects with life cycles tightly coupled to plant phenology. Divergence in the timing of spring budbreak between two sympatric sister oak species has been shown to promote temporal isolation between host plants and their host-associated populations of a cynipid gall wasp. Here, we examined the generality of this mechanism by testing the hypothesis of cascading temporal isolation for five additional gall-formers and three natural enemy species associated with these same oak species. The timing of adult emergence from galls differed significantly between host-associated populations for all nine species and parallels the direction of the phenological differences between host plants. Differences in emergence timing can reduce gene flow between host-associated populations by diminishing mating opportunities and/or reducing the fitness of immigrants due to differences in the availability of ephemeral resources. Our study suggests that cascading temporal isolation could be a powerful 'biodiversity generator' across multiple trophic levels in tightly coupled plant-insect systems.


Asunto(s)
Insectos , Avispas , Animales , Interacciones Huésped-Parásitos , Plantas , Simpatría
10.
Mol Ecol ; 28(18): 4197-4211, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31478268

RESUMEN

Disentangling the processes underlying geographic and environmental patterns of biodiversity challenges biologists as such patterns emerge from eco-evolutionary processes confounded by spatial autocorrelation among sample units. The herbivorous insect, Belonocnema treatae (Hymenoptera: Cynipidae), exhibits regional specialization on three plant species whose geographic distributions range from sympatry through allopatry across the southern United States. Using range-wide sampling spanning the geographic ranges of the three host plants and genotyping-by-sequencing of 1,217 individuals, we tested whether this insect herbivore exhibited host plant-associated genomic differentiation while controlling for spatial autocorrelation among the 58 sample sites. Population genomic structure based on 40,699 SNPs was evaluated using the hierarchical Bayesian model entropy to assign individuals to genetic clusters and estimate admixture proportions. To control for spatial autocorrelation, distance-based Moran's eigenvector mapping was used to construct regression variables summarizing spatial structure inherent among sample sites. Distance-based redundancy analysis (dbRDA) incorporating the spatial variables was then applied to partition host plant-associated differentiation (HAD) from spatial autocorrelation. By combining entropy and dbRDA to analyse SNP data, we unveiled a complex mosaic of highly structured differentiation within and among gall-former populations finding evidence that geography, HAD and spatial autocorrelation all play significant roles in explaining patterns of genomic differentiation in B. treatae. While dbRDA confirmed host association as a significant predictor of patterns of genomic variation, spatial autocorrelation among sites explained the largest proportion of variation. Our results demonstrate the value of combining dbRDA with hierarchical structural analyses to partition spatial/environmental patterns of genomic variation.


Asunto(s)
Biodiversidad , Geografía , Herbivoria/fisiología , Interacciones Huésped-Parásitos , Himenópteros/fisiología , Quercus/parasitología , Animales , Entropía , Variación Genética , Genética de Población , Genotipo , Interacciones Huésped-Parásitos/genética , Himenópteros/genética , Análisis de Componente Principal , Quercus/genética , Estados Unidos
11.
Insects ; 10(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470668

RESUMEN

Ascertaining the causes of adaptive radiation is central to understanding how new species arise and come to vary with their resources. The ecological theory posits adaptive radiation via divergent natural selection associated with novel resource use; an alternative suggests character displacement following speciation in allopatry and then secondary contact of reproductively isolated but ecologically similar species. Discriminating between hypotheses, therefore, requires the establishment of a key role for ecological diversification in initiating speciation versus a secondary role in facilitating co-existence. Here, we characterize patterns of genetic variation and postzygotic reproductive isolation for tephritid fruit flies in the Rhagoletis cingulata sibling species group to assess the significance of ecology, geography, and non-adaptive processes for their divergence. Our results support the ecological theory: no evidence for intrinsic postzygotic reproductive isolation was found between two populations of allopatric species, while nuclear-encoded microsatellites implied strong ecologically based reproductive isolation among sympatric species infesting different host plants. Analysis of mitochondrial DNA suggested, however, that cytoplasmic-related reproductive isolation may also exist between two geographically isolated populations within R cingulata. Thus, ecology associated with sympatric host shifts and cytoplasmic effects possibly associated with an endosymbiont may be the key initial drivers of the radiation of the R. cingulata group.

12.
Genome Biol Evol ; 11(10): 2767-2773, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553440

RESUMEN

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic resources. We report a draft genome assembly of the wasp Diachasma alloeum (Hymenoptera: Braconidae), a host-specific parasitoid of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae), and a developing model for understanding how ecological speciation can "cascade" across trophic levels. Identification of gene content confirmed the overall quality of the draft genome, and we manually annotated ∼400 genes as part of this study, including those involved in oxidative phosphorylation, chemosensation, and reproduction. Through comparisons to model hymenopterans such as the European honeybee Apis mellifera and parasitoid wasp Nasonia vitripennis, as well as a more closely related braconid parasitoid Microplitis demolitor, we identified a proliferation of transposable elements in the genome, an expansion of chemosensory genes in parasitoid wasps, and the maintenance of several key genes with known roles in sexual reproduction and sex determination. The D. alloeum genome will provide a valuable resource for comparative genomics studies in Hymenoptera as well as specific investigations into the genomic changes associated with ecological speciation and transitions to asexuality.


Asunto(s)
Genoma de los Insectos , Avispas/genética , Animales , Femenino , Genes de Insecto , Especiación Genética , Himenópteros/genética , Masculino , Modelos Biológicos , Reproducción Asexuada/genética , Procesos de Determinación del Sexo
13.
Biol Lett ; 15(9): 20190470, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31480937

RESUMEN

Anthropogenic environmental change is predicted to disrupt multitrophic interactions, which may have drastic consequences for population-level processes. Here, we investigate how a large-scale human-mediated disturbance affects the abundance of North America's most venomous caterpillar species, Megalopyge opercularis. Specifically, we used a natural experiment where netting was deployed to cover the entire canopies of a subset of mature southern live oak trees (Quercus virginiana) to exclude urban pest birds (grackles and pigeons), throughout an 8.1 km2 area encompassing a medical centre in Houston, Texas. We used this experimental exclusion to test the following hypothesis: release from avian predators increases caterpillar abundance to outbreak levels, which increases the risk to human health. Results from a multi-year survey show that caterpillar abundance increased, on average, more than 7300% on netted versus non-netted trees. Thus, increases in caterpillar abundance due to anthropogenic enemy release increase human exposure to this venomous pest, and should be considered a health threat in the area. This study emphasizes the unforeseen consequences of ecological disturbance for species interactions and highlights the importance of considering ecology in urban planning.


Asunto(s)
Mariposas Nocturnas , Ponzoñas , Animales , Brotes de Enfermedades , Humanos , Texas , Árboles
14.
Ecol Evol ; 9(1): 393-409, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680122

RESUMEN

Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.

15.
Evolution ; 73(3): 554-568, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30667065

RESUMEN

All organisms exist within a complex network of interacting species, thus evolutionary change may have reciprocal effects on multiple taxa. Here, we demonstrate "cascading reproductive isolation," whereby ecological differences that reduce gene flow between populations at one trophic level affect reproductive isolation (RI) among interacting species at the next trophic level. Using a combination of field, laboratory and common-garden studies and long-term herbaria records, we estimate and evaluate the relative contribution of temporal RI to overall prezygotic RI between populations of Belonocnema treatae, a specialist gall-forming wasp adapted to sister species of live oak (Quercus virginiana and Q. geminata). We link strong temporal RI between host-associated insect populations to differences between host plant budbreak phenology. Budbreak initiates flowering and the production of new leaves, which are an ephemeral resource critical to insect reproduction. As flowering time is implicated in RI between plant species, budbreak acts as a "multitrophic multi-effect trait," whereby differences in budbreak phenology contribute to RI in plants and insects. These sister oak species share a diverse community of host-specific gall-formers and insect natural enemies similarly dependent on ephemeral plant tissues. Thus, our results set the stage for testing for parallelism in a role of plant phenology in driving temporal cascading RI across multiple species and trophic levels.


Asunto(s)
Herbivoria , Quercus/fisiología , Aislamiento Reproductivo , Avispas/fisiología , Animales , Florida , Cadena Alimentaria , Estaciones del Año , Especificidad de la Especie
16.
Methods Mol Biol ; 1858: 195-212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414119

RESUMEN

Intracellular bacteria are ubiquitous in the insect world, with perhaps the best-studied example being the alphaproteobacterium, Wolbachia. Like most endosymbionts, Wolbachia cannot be cultivated outside of its host cells, hindering traditional microbial characterization techniques. Furthermore, multiple Wolbachia strains can be present within a single host, and certain strains can be present in densities below the detection limit of current methods. To date, Wolbachia has most commonly been studied using polymerase chain reaction (PCR) amplification and Sanger DNA sequencing by targeting specific genes in the bacterium's genome. PCR amplification and Sanger sequencing of multiple Wolbachia strains requires analysis of individually cloned sequences, which is resource and labor intensive. To help mitigate these difficulties, we present a modified double digest restriction site associated DNA sequencing (ddRADseq) approach to target and sequence in parallel multiple genes by adding restriction enzyme recognition sites to gene-specific PCR primers. Adopting this strategy allows us to uniquely tag and sequence amplicons from multiple hosts simultaneously on an Illumina MiSeq platform. Our approach represents an efficient and cost-effective method to characterize multiple target genes in population surveys.


Asunto(s)
Biología Computacional/métodos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Insectos/microbiología , Simbiosis , Wolbachia/genética , Animales , Proteínas Bacterianas/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , Análisis de Secuencia de ADN/métodos , Wolbachia/aislamiento & purificación , Wolbachia/fisiología
17.
Curr Biol ; 28(24): R1370-R1374, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562523

RESUMEN

Egan et al. introduce the reader to gall wasps, including a description of their life cycle and complex ecological interactions with host plants and natural enemies.


Asunto(s)
Interacciones Huésped-Parásitos , Tumores de Planta/parasitología , Plantas/parasitología , Simbiosis , Avispas/fisiología , Animales , Fenómenos Fisiológicos de las Plantas
18.
Evolution ; 72(9): 1972-1973, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30101493

RESUMEN

Urbanization provides a natural experiment for biologists to test how anthropogenic environmental change affects evolution in real time and frames predictions for anticipated evolutionary outcomes worldwide. Start et al. () found that changes in species interactions (herbivore abundance and avian predation) along urbanization gradients predictably alter the shape and magnitude of natural selection on gall size (a defensive trait), suggesting that rapid global environmental change can alter species interactions, which may have foreseeable evolutionary consequences.


Asunto(s)
Selección Genética , Urbanización , Animales , Aves , Fenotipo , Conducta Predatoria
19.
Curr Biol ; 28(16): R863-R864, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130501

RESUMEN

We report evidence of a new trophic interaction in nature whereby a parasitic plant attacks multiple species of insects that manipulate plant tissue when the two co-occur on a shared primary host plant. Most plant species are attacked by a great diversity of external and internal herbivores [1]. One common herbivore guild, gall-forming insects, induce tumor-like structures of nutrient-rich plant tissue within which immature insects feed and develop [2,3]. While the gall is made of plant tissue, its growth and development are controlled by the insect and it therefore represents an extended phenotype of the gall former [4]. Typically, parasitic plants attack other plants to gain nutritional requirements by connecting directly to the vascular system of their hosts using modified root structures called haustoria[5]. Here, we document the first observation of a parasitic plant attacking the insect-induced galls of multiple gall-forming species and provide evidence that this interaction negatively affects gall former fitness.


Asunto(s)
Parásitos , Animales , Herbivoria , Insectos , Tumores de Planta , Plantas
20.
Genes (Basel) ; 9(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783692

RESUMEN

A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...