Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anaesthesia ; 78(12): 1481-1492, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37880924

RESUMEN

Cardiac surgery requiring cardiopulmonary bypass is associated with postoperative acute kidney injury and neurocognitive disorders, including delirium. Intra-operative inflammation and/or impaired tissue perfusion/oxygenation are thought to be contributors to these outcomes. It has been hypothesised that these problems may be ameliorated by the highly selective α2 -agonist, dexmedetomidine. We tested the effects of dexmedetomidine on renal and cerebral microcirculatory tissue perfusion, oxygenation and histology in a clinically relevant ovine model. Sixteen sheep were studied while conscious, after induction of anaesthesia and during 2 h of cardiopulmonary bypass. Eight sheep were allocated randomly to receive an intravenous infusion of dexmedetomidine (0.4-0.8 µg.kg-1 .h-1 ) from induction of anaesthesia to the end of cardiopulmonary bypass, and eight to receive an equivalent volume of matched placebo (0.9% sodium chloride). Commencement of cardiopulmonary bypass decreased renal medullary tissue oxygenation in the placebo group (mean (95%CI) 5.96 (4.24-7.23) to 1.56 (0.84-2.09) kPa, p = 0.001), with similar hypoxic levels observed in the dexmedetomidine group (6.33 (5.33-7.07) to 1.51 (0.33-2.39) kPa, p = 0.002). While no differences in kidney function (i.e. reduced creatinine clearance) were evident, a greater incidence of histological renal tubular injury was observed in sheep receiving dexmedetomidine (7/8 sheep) compared with placebo (2/8 sheep), p = 0.041. Graded on a semi-quantitative scale (0-3), median (IQR [range]) severity of histological renal tubular injury was higher in the dexmedetomidine group compared with placebo (1.5 (1-2 [0-3]) vs. 0 (0-0.3 [0-1]) respectively, p = 0.013). There was no difference in cerebral tissue microglial activation (neuroinflammation) between the groups. Dexmedetomidine did not reduce renal medullary hypoxia or cerebral neuroinflammation in sheep undergoing cardiopulmonary bypass.


Asunto(s)
Dexmedetomidina , Animales , Encéfalo , Puente Cardiopulmonar , Dexmedetomidina/uso terapéutico , Riñón , Microcirculación , Enfermedades Neuroinflamatorias , Ovinos
2.
Acta Physiol (Oxf) ; 222(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29127739

RESUMEN

Acute kidney injury (AKI) is a common complication following cardiac surgery performed on cardiopulmonary bypass (CPB) and has important implications for prognosis. The aetiology of cardiac surgery-associated AKI is complex, but renal hypoxia, particularly in the medulla, is thought to play at least some role. There is strong evidence from studies in experimental animals, clinical observations and computational models that medullary ischaemia and hypoxia occur during CPB. There are no validated methods to monitor or improve renal oxygenation during CPB, and thus possibly decrease the risk of AKI. Attempts to reduce the incidence of AKI by early transfusion to ameliorate intra-operative anaemia, refinement of protocols for cooling and rewarming on bypass, optimization of pump flow and arterial pressure, or the use of pulsatile flow, have not been successful to date. This may in part reflect the complexity of renal oxygenation, which may limit the effectiveness of individual interventions. We propose a multi-disciplinary pathway for translation comprising three components. Firstly, large-animal models of CPB to continuously monitor both whole kidney and regional kidney perfusion and oxygenation. Secondly, computational models to obtain information that can be used to interpret the data and develop rational interventions. Thirdly, clinically feasible non-invasive methods to continuously monitor renal oxygenation in the operating theatre and to identify patients at risk of AKI. In this review, we outline the recent progress on each of these fronts.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Puente Cardiopulmonar/efectos adversos , Hemodinámica/fisiología , Riñón/irrigación sanguínea , Lesión Renal Aguda/fisiopatología , Animales , Procedimientos Quirúrgicos Cardiovasculares/efectos adversos , Procedimientos Quirúrgicos Cardiovasculares/métodos , Humanos , Hipoxia/etiología , Hipoxia/fisiopatología , Hipoxia/prevención & control
3.
Exp Physiol ; 95(1): 34-40, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19617268

RESUMEN

There is a large body of evidence indicating that sympathetic nerves to individual organs are specifically controlled, but only few studies have compared the control of cardiac sympathetic nerve activity (CSNA) with activity in other sympathetic nerves. In this review, changes in sympathetic activity to the heart and kidneys are described during increases in brain [Na+] and in heart failure (HF). In conscious sheep, increases in brain [Na+] increased CSNA and arterial pressure and, conversely, decreased renal sympathetic nerve activity (RSNA), promoting urinary sodium loss. These organ-specific effects are mediated via a neural pathway that includes an angiotensinergic synapse, the lamina terminalis and the paraventricular nucleus of the hypothalamus. There is also evidence of differential control of SNA in HF. In normal sheep, the resting burst incidence of CSNA was much lower than that of RSNA, whereas in HF they increased to similar, almost maximal levels in both nerves. Arterial baroreflex control of both these nerves was unchanged in HF, but the response of CSNA to changes in blood volume was almost absent. These data indicate that in HF the lower arterial pressure leads to reduced baroreflex inhibition of SNA, which, together with the lack of an inhibitory response to the increased volume and cardiac pressures, would contribute to the sympathoexcitation observed. These studies demonstrate differences in the control of CSNA and RSNA, enabling selective actions on the heart and kidney to restore fluid and electrolyte homeostasis in the case of elevated brain [Na+] and to increase cardiac output in HF.


Asunto(s)
Corazón/inervación , Corazón/fisiología , Riñón/inervación , Riñón/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Humanos , Transducción de Señal/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R665-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19535677

RESUMEN

Sympathetic nerve activity (SNA) consists of discharges that vary in amplitude and frequency, reflecting the level of recruitment of nerve fibers and the rhythmic generation and entrainment of activity by the central nervous system. It is unknown whether selective changes in these amplitude and frequency components account for organ-specific changes in SNA in response to alterations in blood volume or for the impaired SNA responses to volume changes in heart failure (HF). To address these questions, we measured cardiac SNA (CSNA) and renal SNA (RSNA) simultaneously in conscious, normal sheep and sheep in HF induced by rapid ventricular pacing. Volume expansion decreased CSNA (-62 +/- 10%, P < 0.05) and RSNA (-59 +/- 10%, P < 0.05) equally (n = 6). CSNA decreased as a result of a reduction in burst frequency, whereas RSNA fell because of falls in burst frequency and amplitude. Hemorrhage increased CSNA (+74 +/- 9%, P < 0.05) more than RSNA (+21 +/- 5%, P < 0.09), in both cases because of increased burst frequency, whereas burst amplitude decreased. In HF, burst frequency of CSNA (from 26 +/- 3 to 75 +/- 3 bursts/min) increased more than that of RSNA (from 63 +/- 4 to 79 +/- 4 bursts/min). In HF, volume expansion caused no change in CSNA and an attenuated decrease in RSNA, due entirely to decreased burst amplitude. Hemorrhage did not significantly increase SNA in either nerve in HF. These findings support the concept that the number of sympathetic fibers recruited and their firing frequency are controlled independently. Furthermore, afferent stimuli, such as changes in blood volume, cause organ-specific responses in each of these components, which are also selectively altered in HF.


Asunto(s)
Volumen Sanguíneo , Insuficiencia Cardíaca/fisiopatología , Corazón/inervación , Hemorragia/fisiopatología , Riñón/inervación , Sistema Nervioso Simpático/fisiopatología , Potenciales de Acción , Vías Aferentes/fisiopatología , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca , Ovinos , Factores de Tiempo
5.
Am J Physiol Heart Circ Physiol ; 293(1): H798-804, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17434976

RESUMEN

Increased sympathetic drive to the heart worsens prognosis in heart failure, but the level of cardiac sympathetic nerve activity (CSNA) has been assessed only by indirect methods, which do not permit testing of whether its control by arterial baroreceptors is defective. To do this, CSNA was measured directly in 16 female sheep, 8 of which had been ventricularly paced at 200-220 beats/min for 4-6 wk, until their ejection fraction fell to between 35 and 40%. Recording electrodes were surgically implanted in the cardiac sympathetic nerves, and after 3 days' recovery the responses to intravenous phenylephrine and nitroprusside infusions were measured in conscious sheep. Electrophysiological recordings showed that resting CSNA (bursts/100 heartbeats) was significantly elevated in heart-failure sheep (89 +/- 3) compared with normal animals (46 +/- 6; P < 0.001). This increased CSNA was not accompanied by any increase in the low-frequency power of heart-rate variability. The baroreceptor-heart rate reflex was significantly depressed in heart failure (maximum gain -3.29 +/- 0.56 vs. -5.34 +/- 0.66 beats.min(-1).mmHg(-1) in normal animals), confirming published findings. In contrast, the baroreflex control of CSNA was undiminished (maximum gain in heart failure -6.33 +/- 1.06 vs. -6.03 +/- 0.95%max/mmHg in normal sheep). Direct recordings in a sheep model of heart failure thus show that resting CSNA is strikingly increased, but this is not due to defective control by arterial baroreceptors.


Asunto(s)
Arterias/fisiopatología , Barorreflejo , Presión Sanguínea , Gasto Cardíaco Bajo/fisiopatología , Frecuencia Cardíaca , Sistema Nervioso Simpático/fisiopatología , Animales , Femenino , Ovinos
6.
Am J Physiol Regul Integr Comp Physiol ; 292(5): R1893-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17255211

RESUMEN

The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.


Asunto(s)
Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Hipertensión/inducido químicamente , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Losartán/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Ovinos
7.
Clin Exp Pharmacol Physiol ; 33(12): 1269-74, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17184514

RESUMEN

1. Heart Failure (HF) is a serious, debilitating condition with poor survival rates and an increasing level of prevalence. A characteristic of HF is a compensatory neurohumoral activation that increases with the severity of the condition. 2. The increase in sympathetic activity may be beneficial initially, providing inotropic support to the heart and peripheral vasoconstriction, but in the longer term it promotes disease progression and worsens prognosis. This is particularly true for the increase in cardiac sympathetic nerve activity, as shown by the strong inverse correlation between cardiac noradrenaline spillover and prognosis and by the beneficial effect of beta-adrenoceptor antagonists. 3. Possible causes for the raised level of sympathetic activity in HF include altered neural reflexes, such as those from baroreceptors and chemoreceptors, raised levels of hormones, such as angiotensin II, acting on circumventricular organs, and changes in central mechanisms that may amplify the responses to these inputs. 4. The control of sympathetic activity to different organs is regionally heterogeneous, as demonstrated by a lack of concordance in burst patterns, different responses to reflexes, opposite responses of cardiac and renal sympathetic nerves to central angiotensin and organ-specific increases in sympathetic activity in HF. These observations indicate that, in HF, it is essential to study the factors causing sympathetic activation in individual outflows, in particular those that powerfully, and perhaps preferentially, increase cardiac sympathetic nerve activity.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Angiotensina II/fisiología , Animales , Barorreflejo/fisiología , Humanos , Neurotransmisores/fisiología
8.
Peptides ; 26(7): 1248-56, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15949643

RESUMEN

Urotensin II (UII) is a highly conserved peptide that has potent cardiovascular actions following central and systemic administration. To determine whether the cardiovascular actions of UII are mediated via beta-adrenoceptors, we examined the effect of intravenous (IV) propranolol on the responses to intracerebroventricular (ICV) and IV administration of UII in conscious sheep. Sheep were surgically instrumented with ICV guide tubes and flow probes or cardiac sympathetic nerve recording electrodes. ICV UII (0.2 nmol/kg over 1 h) caused prolonged increases in heart rate (HR; 33 +/- 11 beats/min; P < 0.01), dF/dt (581 +/- 83 L/min/s; P < 0.001) and cardiac output (2.3 +/- 0.4 L/min; P < 0.001), accompanied by increases in coronary (19.8 +/- 5.4 mL/min; P < 0.01), mesenteric (211 +/- 50 mL/min; P < 0.05) and iliac (162 +/- 31 mL/min; P < 0.001) blood flows and plasma glucose (7.0 +/- 2.6 mmol/L; P < 0.05). Propranolol (30 mg bolus followed by 0.5 mg/kg/h IV) prevented the cardiac responses to ICV UII and inhibited the mesenteric vasodilatation. At 2 h after ICV UII, when HR and mean arterial pressure (MAP) were increased, cardiac sympathetic nerve activity (CSNA) was unchanged and the relation between CSNA and diastolic pressure was shifted to the right (P < 0.05). The hyperglycemia following ICV UII was abolished by ganglion blockade but not propranolol. IV UII (20 nmol/kg) caused a transient increase in HR and fall in stroke volume; these effects were not blocked by propranolol. These results demonstrate that the cardiac actions of central UII depend on beta-adrenoreceptor stimulation, secondary to increased CSNA and epinephrine release, whereas the cardiac actions of systemic UII are not mediated by beta-adrenoreceptors and probably depend on a direct action of UII on the heart.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Corazón/efectos de los fármacos , Urotensinas/administración & dosificación , Urotensinas/antagonistas & inhibidores , Animales , Femenino , Corazón/inervación , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intravenosas , Inyecciones Intraventriculares , Propranolol/farmacología , Receptores Adrenérgicos beta/efectos de los fármacos , Ovinos , Sistema Nervioso Simpático/efectos de los fármacos , Urotensinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...