Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746258

RESUMEN

Humans have the remarkable ability to manage foot-ground interaction seamlessly across terrain changes despite the high dynamic complexity of the task. Understanding how adaptation in the neuromotor system enables this level of robustness in the face of changing interaction dynamics is critical for developing more effective gait retraining interventions. We developed an adjustable surface stiffness treadmill (AdjuSST) to trigger these adaptation mechanisms and enable studies to better understand human adaptation to changing foot-ground dynamics. The AdjuSST system makes use of fundamental beam-bending principles; it controls surface stiffness by controlling the effective length of a cantilever beam. The beam acts as a spring suspension for the transverse endpoint load applied through the treadmill. The system is capable of enforcing a stiffness range of 15-300kN/m within 340 ms, deflecting linearly downwards up to 10 cm, and comfortably accommodating two full steps of travel along the belt. AdjuSST offers significant enhancements in effective walking surface length compared to similar systems, while also maintaining a useful stiffness range and responsive spring suspension. These improvements enhance our ability to study locomotor control and adaptation to changes in surface stiffness, as well as provide new avenues for gait rehabilitation.

2.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493355

RESUMEN

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Asunto(s)
Contracción Muscular , Carrera , Humanos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas , Pierna , Carrera/fisiología
3.
Med Sci Sports Exerc ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38376997

RESUMEN

PURPOSE: To assess the influence of "super-shoes" on metabolic cost and joint mechanics in competitive female runners, and to understand how foot strike pattern may influence the footwear effects. METHODS: Eighteen competitive female runners ran four 5-minute bouts on a force instrumented treadmill at 12.9 km·h-1 in: 1) Nike Vaporfly Next% 2TM (SUPER) and 2) Nike Pegasus 38TM (CON) in a randomized and mirrored order. RESULTS: Metabolic power was improved by 4.2% (p < 0.001; d = 0.43) and MTP negative work (p < 0.001; d = 1.22), ankle negative work (p = 0.001; d = 0.67), and ankle positive work (p < 0.001; d = 0.97) were all smaller when running in SUPER compared to CON. There was no correlation between foot strike pattern and the between-shoe (CON to SUPER) percent change for metabolic power (r = 0.093, p = 0.715). CONCLUSIONS: Metabolic power improved by 4.2% in "super-shoes" (but only by ~3.2% if controlling for shoe mass differences) in this cohort of competitive female runners which is a smaller improvement than previously observed in men. The reduced mechanical demand at the MTP and ankle in "super-shoes" are consistent with previous literature and may explain or contribute to the metabolic improvements observed in "super-shoes", however foot strike pattern was not a moderating factor for the metabolic improvements of "super-shoes". Future studies should directly compare the metabolic response among different types of "super-shoes" between men and women.

4.
Sports Med ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407747

RESUMEN

In the quest to uncover the underlying mechanisms responsible for the performance-enhancing benefits imparted by advanced footwear technology (AFT), footwear researchers are employing an individual-level approach. In doing so, they hope to unveil individual-specific responses to AFT otherwise masked by a group-level approach. Classifying an individual's response on the basis of running economy (RE) is a logical strategy given that the intended purpose of AFT is to enhance performance; however, caution should be taken when doing so. Metabolic measurement devices are far from perfect, and given the known errors associated with metabolic measurements we would like to reiterate a suggestion first made 40 years ago: when seeking to quantify the interindividual variability of improvement in RE associated with running in AFT, the best practice is to rely on a minimum of two same-day measurements of RE.

5.
PLoS One ; 19(2): e0288896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38329957

RESUMEN

The zero-velocity update (ZUPT) method has become a popular approach to estimate foot kinematics from foot worn inertial measurement units (IMUs) during walking and running. However, the accuracy of the ZUPT method for stride parameters at sprinting speeds remains unknown, specifically when using sensors with characteristics well suited for sprinting (i.e., high accelerometer and gyroscope ranges and sampling rates). Seventeen participants performed 80-meter track sprints while wearing a Blue Trident IMeasureU IMU. Two cameras, at 20 and 70 meters from the start, were used to validate the ZUPT method on a stride-by-stride and on a cumulative distance basis. In particular, the validity of the ZUPT method was assessed for: (1) estimating a single stride length attained near the end of an 80m sprint (i.e., stride at 70m); (2) estimating cumulative distance from ∼20 to ∼70 m; and (3) estimating total distance traveled for an 80-meter track sprint. Individual stride length errors at the 70-meter mark were within -6% to 3%, with a bias of -0.27%. Cumulative distance errors were within -4 to 2%, with biases ranging from -0.85 to -1.22%. The results of this study demonstrate the ZUPT method provides accurate estimates of stride length and cumulative distance traveled for sprinting speeds.


Asunto(s)
Carrera , Caminata , Humanos , Pie , Fenómenos Biomecánicos , Proteína Forkhead Box M1 , Marcha
6.
Artículo en Inglés | MEDLINE | ID: mdl-38224507

RESUMEN

Wearable exoskeletons show significant potential for improving gait impairments, such as interlimb asymmetry. However, a more profound understanding of whether exoskeletons are capable of eliciting neural adaptation is needed. This study aimed to characterize how individuals adapt to bilateral asymmetric joint stiffness applied by a hip exoskeleton, similar to split-belt treadmill training. Thirteen unimpaired individuals performed a walking trial on the treadmill while wearing the exoskeleton. The right side of the exoskeleton acted as a positive stiffness torsional spring, pulling the thigh towards the neutral standing position, while the left acted as a negative stiffness spring pulling the thigh away from the neutral standing position. The results showed that this intervention applied by a hip exoskeleton elicited adaptation in spatiotemporal and kinetic gait measures similar to split-belt treadmill training. These results demonstrate the potential of the proposed intervention for retraining symmetric gait.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Marcha , Caminata , Extremidad Inferior , Prueba de Esfuerzo , Fenómenos Biomecánicos , Adaptación Fisiológica
7.
Scand J Med Sci Sports ; 34(1): e14526, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858294

RESUMEN

BACKGROUND: Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS: Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS: There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION: There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.


Asunto(s)
Ácidos Borónicos , Carrera , Humanos , Masculino , Fenómenos Biomecánicos , Estudios Cruzados , Zapatos
8.
J Strength Cond Res ; 37(12): 2496-2503, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015737

RESUMEN

ABSTRACT: Looney, DP, Hoogkamer, W, Kram, R, Arellano, CJ, and Spiering, BA. Estimating metabolic energy expenditure during level running in healthy, military-age women and men. J Strength Cond Res 37(12): 2496-2503, 2023-Quantifying the rate of metabolic energy expenditure (M) of varied aerobic exercise modalities is important for optimizing fueling and performance and maintaining safety in military personnel operating in extreme conditions. However, although equations exist for estimating oxygen uptake during running, surprisingly, there are no general equations that estimate M. Our purpose was to generate a general equation for estimating M during level running in healthy, military-age (18-44 years) women and men. We compiled indirect calorimetry data collected during treadmill running from 3 types of sources: original individual subject data (n = 45), published individual subject data (30 studies; n = 421), and published group mean data (20 studies, n = 619). Linear and quadratic equations were fit on the aggregated data set using a mixed-effects modeling approach. A chi-squared (χ2) difference test was conducted to determine whether the more complex quadratic equation was justified (p < 0.05). Our primary indicator of model goodness-of-fit was the root-mean-square deviation (RMSD). We also examined whether individual characteristics (age, height, body mass, and maximal oxygen uptake [V̇O2max]) could minimize prediction errors. The compiled data set exhibited considerable variability in M (14.54 ± 3.52 W·kg-1), respiratory exchange ratios (0.89 ± 0.06), and running speeds (3.50 ± 0.86 m·s-1). The quadratic regression equation had reduced residual sum of squares compared with the linear fit (χ2, 3,484; p < 0.001), with higher combined accuracy and precision (RMSD, 1.31 vs. 1.33 W·kg-1). Age (p = 0.034), height (p = 0.026), and body mass (p = 0.019) were associated with the magnitude of under and overestimation, which was not the case for V̇O2max (p = 0.898). The newly derived running energy expenditure estimation (RE3) model accurately predicts level running M at speeds from 1.78 to 5.70 m·s-1 in healthy, military-age women and men. Users can rely on the following equations for improved predictions of running M as a function of running speed (S, m·s-1) in either watts (W·kg-1 = 4.43 + 1.51·S + 0.37·S2) or kilocalories per minute (kcal·kg-1·min-1 = 308.8 + 105.2·S + 25.58·S2).


Asunto(s)
Personal Militar , Carrera , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Metabolismo Energético , Ejercicio Físico , Prueba de Esfuerzo , Oxígeno , Consumo de Oxígeno
9.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873204

RESUMEN

Wearable exoskeletons show significant potential for improving gait impairments, such as interlimb asymmetry. However, a more profound understanding of whether exoskeletons are capable of eliciting neural adaptation is needed. This study aimed to characterize how individuals adapt to bilateral asymmetric joint stiffness applied by a hip exoskeleton, similar to split-belt treadmill training. Thirteen unimpaired individuals performed a walking trial on the treadmill while wearing the exoskeleton. The right side of the exoskeleton acted as a positive stiffness torsional spring, pulling the thigh towards the neutral standing position, while the left acted as a negative stiffness spring pulling the thigh away from the neutral standing position. The results showed that this intervention applied by a hip exoskeleton elicited adaptation in spatiotemporal and kinetic gait measures similar to split-belt treadmill training. These results demonstrate the potential of the proposed intervention for retraining symmetric gait.

10.
Med Sci Sports Exerc ; 55(12): 2290-2298, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37443458

RESUMEN

INTRODUCTION/PURPOSE: Previous results about shoe longitudinal bending stiffness (LBS) and running economy (RE) show high variability. This study aimed to assess the effects of shoes with increased LBS on RE and performance in trained and national runners. METHODS: Twenty-eight male runners were divided into two groups according to their 10-km performance times (trained, 38-45 min and national runners, <34 min). Subjects ran 2 × 3 min (at 9 and 13 km·h -1 for trained, and 13 and 17 km·h -1 for national runners) with an experimental shoe with carbon fiber plate to increase the LBS (Increased LBS) and a control shoe (without carbon fiber plate). We measured energy cost of running (W·kg -1 ) and spatiotemporal parameters in visit one and participants performed a 3000 m time trial (TT) in two successive visits. RESULTS: Increased LBS improved RE in the trained group at slow (11.41 ± 0.93 W·kg -1 vs 11.86 ± 0.93 W·kg -1 ) and fast velocity (15.89 ± 1.24 W·kg -1 vs 16.39 ± 1.24 W·kg -1 ) and only at the fast velocity in the national group (20.35 ± 1.45 W·kg -1 vs 20.78 ± 1.18 W·kg -1 ). The improvements in RE were accompanied by different changes in biomechanical variables between groups. There were a similar improvement in the 3000 m TT test in Increased LBS for trained (639 ± 59 vs 644 ± 61 s in control shoes) and national runners (569 ± 21 vs 574 ± 21 s in control shoes) with more constant pace in increased LBS compared with control shoes in both groups. CONCLUSIONS: Increasing shoe LBS improved RE at slow and fast velocities in trained runners and only at fast velocity in national runners. However, the 3000 m TT test improved similarly in both levels of runners with increased LBS. The improvements in RE are accompanied by small modifications in running kinematics that could explain the difference between the different levels of runners.


Asunto(s)
Carrera , Zapatos , Humanos , Masculino , Fibra de Carbono , Fenómenos Biomecánicos
11.
Gait Posture ; 104: 70-76, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37327557

RESUMEN

BACKGROUND: Footwear interventions are a potential avenue to correct walking asymmetry in neurologic populations, such as stroke. However, the motor learning mechanisms that underlie the changes in walking imposed by asymmetric footwear are unclear. RESEARCH QUESTION: The objectives of this study were to examine symmetry changes during and after an asymmetric shoe height intervention in (1) vertical impulse and (2) spatiotemporal gait parameters and (3) joint kinematics, in healthy young adults METHODS: Eleven healthy young adults (3 males, 8 females; 21.2 ± 3.1 years old) participated in this study. Participants walked on an instrumented treadmill at 1.3 m/s for four conditions: (1) a 5-minute familiarization with equal shoe height, (2) a 5-minute baseline with equal shoe height, (3) a 10-minute intervention, where participants walked with asymmetric shoe height with a 10 mm shoe insert in one shoe, and (4) a 10-minute post-intervention, where participants walked with equal shoe height. Asymmetry in kinetics and kinematics were used to identify changes during intervention and aftereffects, a hallmark of feedforward adaptation RESULTS: Participants did not alter vertical impulse asymmetry (p = 0.667) nor stance time asymmetry (p = 0.228). During the intervention, step time asymmetry (p = 0.003) and double support asymmetry (p < 0.001) were greater compared to baseline. Leg joint asymmetry during stance (Ankle plantarflexion: p < 0.001; Knee flexion: p < 0.001; Hip extension: p = 0.011) was greater during the intervention compared to baseline. However, changes in spatiotemporal gait variables and joint mechanics did not demonstrate aftereffects. SIGNIFICANCE: Our results show that healthy human adults change gait kinematics, but not weight-bearing symmetry with asymmetrical footwear. This suggests that healthy humans prioritize maintaining vertical impulse by changing their kinematics. Further, the changes in gait kinematics are short-lived, suggesting feedback-based control, and a lack of feedforward motor adaptations.


Asunto(s)
Marcha , Zapatos , Masculino , Femenino , Humanos , Adulto Joven , Adolescente , Adulto , Fenómenos Biomecánicos , Caminata , Extremidad Inferior
12.
J Neurophysiol ; 129(4): 900-913, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883759

RESUMEN

Walking on a split-belt treadmill elicits an adaptation response that changes baseline step length asymmetry. The underlying causes of this adaptation, however, are difficult to determine. It has been proposed that effort minimization may drive this adaptation, based on the idea that adopting longer steps on the fast belt, or positive step length asymmetry (SLA), can cause the treadmill to exert net-positive mechanical work on a bipedal walker. However, humans walking on split-belt treadmills have not been observed to reproduce this behavior when allowed to freely adapt. To determine if an effort-minimization motor control strategy would result in experimentally observed adaptation patterns, we conducted simulations of walking on different combinations of belt speeds with a human musculoskeletal model that minimized muscle excitations and metabolic rate. The model adopted increasing amounts of positive SLA and decreased its net metabolic rate with increasing belt speed difference, reaching +42.4% SLA and -5.7% metabolic rate relative to tied-belt walking at our maximum belt speed ratio of 3:1. These gains were primarily enabled by an increase in braking work and a reduction in propulsion work on the fast belt. The results suggest that a purely effort minimization driven split-belt walking strategy would involve substantial positive SLA, and that the lack of this characteristic in human behavior points to additional factors influencing the motor control strategy, such as aversion to excessive joint loads, asymmetry, or instability.NEW & NOTEWORTHY Behavioral observations of split-belt treadmill adaptation have been inconclusive toward its underlying causes. To estimate gait patterns when driven exclusively by one of these possible underlying causes, we simulated split-belt treadmill walking with a musculoskeletal model that minimized its summed muscle excitations. Our model took significantly longer steps on the fast belt and reduced its metabolic rate below tied-belt walking, unlike experimental observations. This suggests that asymmetry is energetically optimal, but human adaptation involves additional factors.


Asunto(s)
Marcha , Caminata , Humanos , Caminata/fisiología , Marcha/fisiología , Prueba de Esfuerzo , Metabolismo Energético , Adaptación Fisiológica/fisiología , Fenómenos Biomecánicos
13.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798340

RESUMEN

Wearable robotic exoskeletons hold great promise for gait rehabilitation as portable, accessible tools. However, a better understanding of the potential for exoskeletons to elicit neural adaptation-a critical component of neurological gait rehabilitation-is needed. In this study, we investigated whether humans adapt to bilateral asymmetric stiffness perturbations applied by a hip exoskeleton, taking inspiration from asymmetry augmentation strategies used in split-belt treadmill training. During walking, we applied torques about the hip joints to repel the thigh away from a neutral position on the left side and attract the thigh toward a neutral position on the right side. Six participants performed an adaptation walking trial on a treadmill while wearing the exoskeleton. The exoskeleton elicited time-varying changes and aftereffects in step length and propulsive/braking ground reaction forces, indicating behavioral signatures of neural adaptation. These responses resemble typical responses to split-belt treadmill training, suggesting that the proposed intervention with a robotic hip exoskeleton may be an effective approach to (re)training symmetric gait.

14.
J Appl Physiol (1985) ; 134(2): 395-404, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603047

RESUMEN

Hundred years ago, Fenn demonstrated that when a muscle shortens faster, its energy liberation increases. Fenn's results were the first of many that led to the general understanding that isometric muscle contractions are energetically cheaper than concentric contractions. However, this evidence is still primarily based on single fiber or isolated (ex vivo) muscle studies and it remains unknown whether this translates to whole body metabolic rate. In this study, we specifically changed the contraction velocity of the ankle plantar flexors and quantified the effects on triceps surae muscle activity and whole body metabolic rate during cyclic plantar flexion (PF) contractions. Fifteen participants performed submaximal ankle plantar flexions (∼1/3 s activation and ∼2/3 s relaxation) on a dynamometer at three different ankle angular velocities: isometric (10° PF), isokinetic at 30°/s (5-15° PF), and isokinetic at 60°/s (0-20° PF) while target torque (25% MVC) and cycle frequency were kept constant. In addition, to directly determine the effect of ankle angular velocity on muscle kinematics we collected gastrocnemius medialis muscle fascicle ultrasound data. As expected, increasing ankle angular velocity increased gastrocnemius medialis muscle fascicle contraction velocity and positive mechanical work (P < 0.01), increased mean and peak triceps surae muscle activity (P < 0.01), and considerably increased net whole body metabolic rate (P < 0.01). Interestingly, the increase in triceps surae muscle activity with fast ankle angular velocities was most pronounced in the gastrocnemius lateralis (P < 0.05). Overall, our results support the original findings from Fenn in 1923 and we demonstrated that greater triceps surae muscle contraction velocities translate to increased whole body metabolic rate.NEW & NOTEWORTHY Single muscle fiber studies or research on isolated (ex vivo) muscles demonstrated that faster concentric muscle contractions yield increased energy consumption. Here we translated this knowledge to muscle activation and whole body metabolic rate. Increasing ankle angular velocity increased triceps surae contraction velocity and mechanical work, increasing triceps surae muscle activity and substantially elevating whole body metabolic rate. Additionally, we demonstrated that triceps surae muscle activation strategy depends on the mechanical demands of the task.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Contracción Isométrica/fisiología , Pierna , Articulación del Tobillo/fisiología
15.
Eur J Appl Physiol ; 122(12): 2565-2574, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36064982

RESUMEN

PURPOSE: With few cycling races on the calendar in 2020 due to COVID-19, Everesting became a popular challenge: you select one hill and cycle up and down it until you reach the accumulated elevation of Mt. Everest (8,848 m or 29,029ft). With an almost infinite number of different hills across the world, the question arises what the optimal hill for Everesting would be. Here, we address the biomechanics and energetics of up- and downhill cycling to determine the characteristics of this optimal hill. METHODS: During uphill cycling, the mechanical power output equals the power necessary to overcome air resistance, rolling resistance, and work against gravity, and for a fast Everesting time, one should maximize this latter term. To determine the optimal section length (i.e., number of repetitions), we applied the critical power concept and assumed that the U-turn associated with an additional repetition comes with a 6 s time penalty. RESULTS: To use most mechanical power to overcoming gravity, slopes of at least 12% are most suitable, especially since gross efficiency seems only minimally diminished on steeper slopes. Next, we found 24 repetitions to be optimal, yet this number slightly depends on the assumptions made. Finally, we discuss other factors (fueling, altitude, fatigue) not incorporated in the model but also affecting Everesting performances. CONCLUSION: For a fast Everesting time, our model suggests to select a hill climb which preferably starts at (or close to) sea level, with a slope of 12-20% and length of 2-3 km.


Asunto(s)
COVID-19 , Humanos , Ciclismo , Fenómenos Biomecánicos , Altitud , Gravitación
16.
Hum Mov Sci ; 85: 102998, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36108484

RESUMEN

Necessary for effective ambulation, head stability affords optimal conditions for the perception of visual information during dynamic tasks. This maintenance of head-in-space equilibrium is achieved, in part, by the attenuation of the high frequency impact shock resulting from ground contact. While a great deal of experimentation has been done on the matter during steady state locomotion, little is known about how locomotor asymmetry might affect head stability or dynamic visual acuity. In this study, fifteen participants walked on a split-belt treadmill while verbally reporting the orientation of a randomized Landolt-C optotype that was projected at heel strike. Participants were exposed to baseline, adaptation, and washout conditions, as characterized by belt speed ratios of 1:1, 1:3, and 1:1, respectively. Step length asymmetry, shock attenuation, high and low frequency head signal power, and dynamic visual acuity were averaged across the first and last fifty strides of each condition. Across the first fifty strides, step length asymmetry was significantly greater during adaptation than during baseline (p < 0.001; d = 2.442), and shock attenuation was significantly lower during adaptation than during baseline (p = 0.041; d = -0.679). High frequency head signal power was significantly greater during adaptation than during baseline (p < 0.001; d = -1.227), indicating a reduction in head stability. While dynamic visual acuity was not significantly lower during adaptation than during baseline (p = 0.052), a moderate effect size suggests a decrease in the measure between the two conditions (d = 0.653). Across the last fifty strides, many of the decrements observed between the baseline and adaptation conditions were greatly reduced. The results of this study indicate that the locomotor asymmetry imposed by the split-belt treadmill during early adaptation might lead to moderate decrements in shock attenuation, head stability, and dynamic visual acuity. Moreover, the relative reduction in magnitude of these decrements across the last fifty strides underscores the adaptive nature of the locomotor and visuomotor systems.


Asunto(s)
Prueba de Esfuerzo , Caminata , Adaptación Fisiológica , Marcha , Talón , Humanos , Locomoción
17.
Scand J Med Sci Sports ; 32(10): 1444-1455, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35839378

RESUMEN

While it is well recognized that the preferred stride frequency (PSF) in running closely corresponds to the metabolically optimal frequency, the underlying mechanisms are still unclear. Changes in joint kinematics when altering stride frequency will affect the muscle-tendon unit lengths and potentially the efficiency of muscles crossing these joints. Here, we investigated how fascicle kinematics and forces of the triceps surae muscle, a highly energy consuming muscle, are affected when running at different stride frequencies. Twelve runners ran on a force measuring treadmill, adopting five different frequencies (PSF; PSF ± 8%; PSF ± 15%), while we measured joint kinematics, whole-body energy expenditure, triceps surae muscle activity, and soleus (SOL; N = 10) and gastrocnemius medialis (GM; N = 12) fascicle kinematics. In addition, we used dynamic optimization to estimate SOL and GM muscle forces. We found that SOL and GM mean muscle fascicle length during stance followed an inverted U-relationship with the longest fascicle lengths occurring at PSF. Fascicle lengths were shortest at frequencies lower than PSF. In addition, average SOL force was greater at PSF-15% compared with PSF. Overall, our results suggest that reduced SOL and GM muscle fascicle lengths, associated with reduced muscle force potential, together with greater SOL force demand, contribute to the increased whole-body energy expenditure when running at lower than PSF. At higher stride frequencies, triceps surae muscle kinematics and force production were less affected suggesting that increased energy expenditure is rather related to higher cost of leg swing and greater cost of force production.


Asunto(s)
Pierna , Carrera , Fenómenos Biomecánicos/fisiología , Humanos , Músculo Esquelético/fisiología , Carrera/fisiología , Tendones/fisiología
18.
J Appl Physiol (1985) ; 133(3): 766-776, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834628

RESUMEN

The benefits of drafting for elite marathon runners are intuitive, but the quantitative energetic and time savings are still unclear due to the different methods used for converting aerodynamic drag force reductions to gross metabolic power savings. Further, we lack a mechanistic understanding of the relationship between aerodynamic drag forces and ground reaction forces (GRFs) over a range of running velocities. Here, we quantified how small horizontal impeding forces affect gross metabolic power and GRF over a range of velocities in competitive runners. In three sessions, 12 runners completed six 5-min trials with 5 min of recovery in-between. We tested one velocity per session (12, 14, and 16 km/h), at three horizontal impeding force conditions (0, 4, and 8 N) applied at the waist of the runners. On average, gross metabolic power increased by 6.13% per 1% body weight of horizontal impeding force but the increases varied considerably between individuals (4.17%-8.14%). With greater horizontal impeding force, braking GRF impulses decreased, whereas propulsive GRF impulses increased, but the impulses were not related to individual changes in gross metabolic power. Combining our findings with those of previous aerodynamics studies, we estimate that for a solo runner (52 kg) at 2-h marathon pace, overcoming aerodynamic drag force (1.39% BW) comprises 7.8% of their gross metabolic power and drafting can save between 3 min 42 s and 5 min 29 s.NEW & NOTEWORTHY We measured the metabolic and biomechanical effects of small horizontal impeding forces (representing realistic aerodynamic drag forces) on high-caliber runners across a range of velocities. Combining our metabolic results with existing aerodynamic models indicates that at 2-h marathon pace, optimal drafting likely allows a marathoner to run between 3 min 42 s and 5 min 29 s faster. Our rule-of-thumb (∼6% increase in gross metabolic power per 1% body weight of horizontal impeding force) will allow others to estimate the performance enhancement of different drafting formations.


Asunto(s)
Carrera de Maratón , Carrera , Fenómenos Biomecánicos , Peso Corporal , Metabolismo Energético , Humanos
19.
Sports Med ; 52(6): 1211-1218, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35195880

RESUMEN

The recent and rapid developments in track spike innovation have been followed by a wave of record-breaking times and top performances. This has led many to question what role "super spikes" play in improving running performance. To date, the specific contributions of new innovations in footwear, including lightweight, resilient, and compliant midsole foam, altered geometry, and increased longitudinal bending stiffness, to track running performance are unknown. Based on current literature, we speculate about what advantages these features provide. Importantly, the effects of super spikes will vary based on several factors including the event (e.g., 100 m vs. 10,000 m) and the characteristics of the athlete wearing them. Further confounding our understanding of super spikes is the difficulty of testing them. Unlike marathon shoes, testing track spikes comes with a unique challenge of quantifying the metabolic energy demands of middle-distance running events, which are partly anaerobic. Quantifying the exact benefits from super spikes is difficult and we may need to rely on comparison of track performances pre- and post- the introduction of super spikes.


Asunto(s)
Carrera , Atletas , Fenómenos Biomecánicos , Humanos , Carrera de Maratón , Zapatos
20.
J Sport Health Sci ; 11(3): 303-308, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740871

RESUMEN

BACKGROUND: Compared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (-3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ∼4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running. METHODS: After familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (-3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4-5 and calculated metabolic power (W/kg) for each shoe model and grade combination. RESULTS: Compared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356). CONCLUSION: On a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.


Asunto(s)
Consumo de Oxígeno , Zapatos , Fenómenos Biomecánicos , Fibra de Carbono , Prueba de Esfuerzo , Humanos , Masculino , Carrera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...