Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 34: 84-92, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26577984

RESUMEN

Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years. STATEMENT OF SIGNIFICANCE: This opinion article on high throughput screening methods reflects one aspect of how the field of biomaterials research has developed and progressed. The piece takes the reader through key developments in biomaterials discovery, particularly focusing on need to reduce bacterial colonisation of surfaces. Such bacterial resistant surfaces are increasingly required in this age of antibiotic resistance. The influence and origin of high-throughput methods are discussed with insights into the future of biomaterials development where computational methods may drive materials development into new fertile areas of discovery. New biomaterials will exhibit responsiveness to adapt to the biological environment and promote better integration and reduced rejection or infection.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Materiales Biocompatibles/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Bacterias/efectos de los fármacos , Humanos , Ensayo de Materiales
2.
Acta Biomater ; 5(7): 2350-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19398391

RESUMEN

The interactions of biomolecules and cells with solid interfaces play a pivotal role in a range of biomedical applications and have therefore been studied in great detail. An improved understanding of these interactions results in the ability to manipulate DNA, proteins and other biomolecules, as well as cells, spatially and temporally at surfaces with high precision. This in turn engenders the development of advanced devices, such as biosensors, bioelectronic components, smart biomaterials and microarrays. Spatial control can be achieved by the production of patterned surface chemistries using modern high-resolution patterning technologies based on lithography, microprinting or microfluidics, whilst temporal control is accessible through the application of switchable surface architectures. The combination of these two surface properties offers unprecedented control over the behaviour of biomolecules and cells at the solid-liquid interface. This review discusses the behaviour of biomolecules and cells at solid interfaces and highlights fundamental and applied research exploring patterned and switchable surfaces.


Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Micromanipulación/métodos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA