Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1153, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326294

RESUMEN

Transcriptional regulator MtrR inhibits the expression of the multidrug efflux pump operon mtrCDE in the pathogenic bacterium Neisseria gonorrhoeae. Here, we show that MtrR binds the hormonal steroids progesterone, ß-estradiol, and testosterone, which are present at urogenital infection sites, as well as ethinyl estrogen, a component of some hormonal contraceptives. Steroid binding leads to the decreased affinity of MtrR for cognate DNA, increased mtrCDE expression, and enhanced antimicrobial resistance. Furthermore, we solve crystal structures of MtrR bound to each steroid, thus revealing their binding mechanisms and the conformational changes that induce MtrR.


Asunto(s)
Neisseria gonorrhoeae , Proteínas Represoras , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a Múltiples Medicamentos , Esteroides/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
2.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398116

RESUMEN

Overexpression of the multidrug efflux pump MtrCDE, a critical factor of multidrug-resistance in Neisseria gonorrhoeae , the causative agent of gonorrheae, is repressed by the transcriptional regulator, MtrR (multiple transferable resistance repressor). Here, we report the results from a series of in vitro experiments to identify innate, human inducers of MtrR and to understand the biochemical and structural mechanisms of the gene regulatory function of MtrR. Isothermal titration calorimetry experiments reveal that MtrR binds the hormonal steroids progesterone, ß-estradiol, and testosterone, all of which are present at significant concentrations at urogenital infection sites as well as ethinyl estrogen, a component of some birth control pills. Binding of these steroids results in decreased affinity of MtrR for cognate DNA, as demonstrated by fluorescence polarization-based assays. The crystal structures of MtrR bound to each steroid provided insight into the flexibility of the binding pocket, elucidated specific residue-ligand interactions, and revealed the conformational consequences of the induction mechanism of MtrR. Three residues, D171, W136 and R176 are key to the specific binding of these gonadal steroids. These studies provide a molecular understanding of the transcriptional regulation by MtrR that promotes N. gonorrhoeae survival in its human host.

3.
Nucleic Acids Res ; 49(7): 4155-4170, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784401

RESUMEN

Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown. In this work, we report the crystal structures of MtrR bound to the mtrCDE and rpoH operators, which reveal a conserved, but degenerate, DNA consensus binding site 5'-MCRTRCRN4YGYAYGK-3'. We complement our structural data with a comprehensive mutational analysis of key MtrR-DNA contacts to reveal their importance for MtrR-DNA binding both in vitro and in vivo. Furthermore, we model and generate common clinical mutations of MtrR to provide plausible biochemical explanations for the contribution of these mutations to multidrug resistance in N. gonorrhoeae. Collectively, our findings unveil key biological mechanisms underlying the global stress responses of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Neisseria gonorrhoeae , Proteínas Represoras , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Mutación , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Gene ; 591(1): 6-13, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27349565

RESUMEN

Progesterone (P4), a steroid produced during estrous cycles and gestation for maintenance of pregnancy, also plays key roles in breast development to allow lactation post-parturition. Progestins (P4 and related steroids) are also implicated in breast cancer etiology. Hormone replacement therapy containing both estrogen and progestins increases breast cancer incidence while estrogen hormone therapy lowers breast cancer risk. P4 signaling via nuclear P4 receptors (PRs) has been extensively studied in breast cancer, however, progestin signaling via non-classical membrane bound progestin receptors (MPRs and PGRMC1) remains unclear. Moreover, P4 metabolites and synthetic progestins may bind membrane progestin receptors. We hypothesized that PR-negative breast epithelial cells express non-classical progestin receptors, which activate intracellular signaling pathways differently depending on nature of progestin. Therefore, our objectives for the current study were to determine expression of MPRs and PGRMC1 in two PR-negative non-tumorigenic breast epithelial cell lines, assess progestin-mediated signaling and biological functions. We determined five MPR isoforms and PGRMC1 were present in MCF10A cells and all progestin receptors but MPRß in MCF12A cells. MCF10A and MCF12A cells were treated with P4, select P4 metabolites (5αP and 3αHP), medroxyprogesterone acetate (MPA), or a specific MPR-Agonist (MPR-Ag) and phosphorylation of ERK, p38, JNK, and AKT was characterized following treatment. To our knowledge this is the first report of ERK and JNK activation in MCF10A and MCF12A cells with P4, P4 metabolites, MPA, and MPR-Ag. Activation of ERK and JNK in cells treated with MPR-Ag implicates MPRs may serve as the receptors responsible for their activation. In contrast, p38 activation varied with cell type and with progestin treatment. P4 and MPA promoted AKT phosphorylation in the MCF12A cell line only whereas no activation was observed in MCF10A cells. Interestingly, cellular proliferation increased in MCF10A cells treated with MPA or 5αP, while MPR-Ag tended to slightly decrease proliferation. Collectively, our data highlights the importance of investigating the effects of synthetic progestins in breast cancer biology. Our results add to the understanding that various progestins have on breast epithelial cells and underscores the importance of considering both membrane bound receptors and progestin type in breast cancer development.


Asunto(s)
Mama/citología , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Progestinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Progesterona/metabolismo , 5-alfa-Dihidroprogesterona , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Acetato de Medroxiprogesterona , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...