Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Rep ; 13(1): 11296, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438479

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) patients are advised to avoid strenuous exercise due to increased risk of arrhythmias. Mice expressing the human FHC-causing mutation R403Q in the myosin heavy chain gene (MYH6) recapitulate the human phenotype, including cytoskeletal disarray and increased arrhythmia susceptibility. Following in vivo administration of isoproterenol, mutant mice exhibited tachyarrhythmias, poor recovery and fatigue. Arrhythmias were attenuated with the ß-blocker atenolol and protein kinase A inhibitor PKI. Mutant cardiac myocytes had significantly prolonged action potentials and triggered automaticity due to reduced repolarization reserve and connexin 43 expression. Isoproterenol shortened cycle length, and escalated electrical instability. Surprisingly isoproterenol did not increase CaV1.2 current. We found alterations in CaV1.2-ß1 adrenergic receptor colocalization assessed using super-resolution nanoscopy, and increased CaV1.2 phosphorylation in mutant hearts. Our results reveal for the first time that altered ion channel expression, co-localization and ß-adrenergic receptor signaling associated with myocyte disarray contribute to electrical instability in the R403Q mutant heart.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Cardiomiopatía Hipertrófica , Humanos , Animales , Ratones , Isoproterenol , Cardiomiopatía Hipertrófica/genética , Arritmias Cardíacas , Corazón
3.
Commun Biol ; 6(1): 4, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596888

RESUMEN

Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young's Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key 'linker' sites in this schema that may represent potential therapeutic targets.


Asunto(s)
Cardiomiopatía Hipertrófica , Ratones , Humanos , Animales , Retroalimentación , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Citoesqueleto/metabolismo , Miocitos Cardíacos/metabolismo , Troponina I/genética , Troponina I/metabolismo , Matriz Extracelular/metabolismo , Hidrogeles
4.
J Mol Cell Cardiol ; 172: 100-108, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041287

RESUMEN

Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.


Asunto(s)
Canales de Calcio Tipo L , Cardiomiopatías , Animales , Humanos , Calcio/metabolismo , Canales de Calcio Tipo L/fisiología , Cardiomiopatías/metabolismo , COVID-19 , Diabetes Mellitus Tipo 2/metabolismo , Hipertrofia/metabolismo , Miocitos Cardíacos/metabolismo , Síndrome Post Agudo de COVID-19
5.
Sci Adv ; 7(39): eabi7514, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559558

RESUMEN

Mitochondrial energy metabolism plays an important role in the pathophysiology of insulin resistance. Recently, a missense N437S variant was identified in the MRPP3 gene, which encodes a mitochondrial RNA processing enzyme within the RNase P complex, with predicted impact on metabolism. We used CRISPR-Cas9 genome editing to introduce this variant into the mouse Mrpp3 gene and show that the variant causes insulin resistance on a high-fat diet. The variant did not influence mitochondrial gene expression markedly, but instead, it reduced mitochondrial calcium that lowered insulin release from the pancreatic islet ß cells of the Mrpp3 variant mice. Reduced insulin secretion resulted in lower insulin levels that contributed to imbalanced metabolism and liver steatosis in the Mrpp3 variant mice on a high-fat diet. Our findings reveal that the MRPP3 variant may be a predisposing factor to insulin resistance and metabolic disease in the human population.

6.
J Physiol ; 599(14): 3447-3448, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34263447

Asunto(s)
Mitocondrias , Humanos
8.
Aging Cell ; 20(7): e13408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096683

RESUMEN

Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep/ep ) or hyper-accurate (Mrps12ha/ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep/ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha/ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.


Asunto(s)
Enfermedades Cardiovasculares/genética , Mitocondrias/metabolismo , Estrés Fisiológico/genética , Animales , Humanos , Longevidad , Masculino , Ratones
9.
J Physiol ; 599(14): 3449-3462, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32710561

RESUMEN

The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.


Asunto(s)
Genoma Mitocondrial , Biosíntesis de Proteínas , Animales , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(37): 23113-23124, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859761

RESUMEN

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in "at risk" patients with identified Gly203Ser gene mutations.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación/genética , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptidos/farmacología , Troponina I/metabolismo
11.
Heart Lung Circ ; 29(11): 1588-1595, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32839116

RESUMEN

BACKGROUND: Cardiovascular disease is the leading cause of death in Australia. Investment in research solutions has been demonstrated to yield health and a 9.8-fold return economic benefit. The sector, however, is severely challenged with success rates of traditional peer-reviewed funding in decline. Here, we aimed to understand the perceived challenges faced by the cardiovascular workforce in Australia prior to the COVID-19 pandemic. METHODS: We used an online survey distributed across Australian cardiovascular societies/councils, universities and research institutes over a period of 6 months during 2019, with 548 completed responses. Inclusion criteria included being an Australian resident or an Australian citizen who lived overseas, and a current or past student or employee in the field of cardiovascular research. RESULTS: The mean age of respondents was 42±13 years, 47% were male, 85% had a full-time position, and 40% were a group leader or laboratory head. Twenty-three per cent (23%) had permanent employment, and 82% of full-time workers regularly worked >40 hours/week. Sixty-eight per cent (68%) said they had previously considered leaving the cardiovascular research sector. If their position could not be funded in the next few years, a staggering 91% of respondents would leave the sector. Compared to PhD- and age-matched men, women were less likely to be a laboratory head and to feel they had a long-term career path as a cardiovascular researcher, while more women were unsure about future employment and had considered leaving the sector (all p<0.05). Greater job security (76%) and government and philanthropic investment in cardiovascular research (72%) were highlighted by responders as the main changes to current practices that would encourage them to stay. CONCLUSION: Strategic solutions, such as diversification of career pathways and funding sources, and moving from a competitive to a collaborative culture, need to be a priority to decrease reliance on government funding and allow cardiovascular researchers to thrive.


Asunto(s)
Investigación Biomédica , Enfermedades Cardiovasculares , Infecciones por Coronavirus/epidemiología , Administración Financiera , Neumonía Viral/epidemiología , Investigadores , Apoyo a la Investigación como Asunto , Recursos Humanos , Adulto , Australia , Betacoronavirus , Investigación Biomédica/economía , Investigación Biomédica/organización & administración , Investigación Biomédica/tendencias , COVID-19 , Empleo/economía , Empleo/psicología , Femenino , Administración Financiera/métodos , Administración Financiera/organización & administración , Administración Financiera/estadística & datos numéricos , Financiación Gubernamental , Humanos , Masculino , Cultura Organizacional , Pandemias , Técnicas de Planificación , Investigadores/economía , Investigadores/psicología , Investigadores/estadística & datos numéricos , Apoyo a la Investigación como Asunto/organización & administración , Apoyo a la Investigación como Asunto/tendencias , SARS-CoV-2 , Encuestas y Cuestionarios , Recursos Humanos/estadística & datos numéricos
12.
Nanomedicine ; 29: 102264, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659322

RESUMEN

Therapeutic approaches for myocardial ischemia-reperfusion injury (MI) have been ineffective due to limited bioavailability and poor specificity. We have previously shown that a peptide that targets the α-interaction domain of the cardiac L-type calcium channel (AID-peptide) attenuates MI when tethered to transactivator of transcription sequence (TAT) or spherical nanoparticles. However some reservations remain regarding use of these delivery platforms due to the relationship with human immunodeficiency virus, off-target effects and toxicity. Here we investigate the use of linear dendronized polymers (denpols) to deliver AID-peptide as a potential MI therapy using in vitro, ex vivo and in vivo models. Optimized denpol-complexed AID-peptide facilitated in vitro cardiac uptake of AID-peptide, and reduced MI. Maximal in vivo cardiac uptake was achieved within the 2 h therapeutic time window for acute myocardial infarction. Importantly, optimized denpol-complexed AID-peptide was not toxic. This platform may represent an alternative therapeutic approach for the prevention of MI.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Nanopartículas/química , Animales , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo L/efectos de los fármacos , Modelos Animales de Enfermedad , Cobayas , Corazón/fisiopatología , Humanos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Polímeros/química , Polímeros/farmacología
13.
Pflugers Arch ; 472(1): 61-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822999

RESUMEN

Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.


Asunto(s)
Potenciales de Acción , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Ventrículos Cardíacos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Ornitina/análogos & derivados , Ornitina/farmacología , Ratas , Ratas Sprague-Dawley
14.
EMBO J ; 38(24): e102155, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31721250

RESUMEN

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , Biogénesis de Organelos , Transducción de Señal , Animales , Ciclo del Ácido Cítrico/fisiología , Escherichia coli/metabolismo , Femenino , Metabolómica , Ratones , Ratones Transgénicos , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Commun ; 10(1): 1396, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918256

RESUMEN

Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation.


Asunto(s)
Cuerpos de Inclusión/patología , Fibras Musculares Esqueléticas/patología , Debilidad Muscular/genética , Enfermedades Musculares/genética , Miocitos Cardíacos/patología , Mioglobina/genética , Adulto , Femenino , Insuficiencia Cardíaca/etiología , Hemo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/fisiopatología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Mutación , Oxígeno/metabolismo , Linaje , Insuficiencia Respiratoria/etiología , Superóxidos/metabolismo , Tomografía Computarizada por Rayos X , Población Blanca/genética
16.
Arch Biochem Biophys ; 665: 166-174, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885674

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder, characterised by myocyte remodeling, disorganisation of sarcomeric proteins, impaired energy metabolism and altered cardiac contractility. Gene mutations encoding cardiac contractile proteins account for 60% of HCM aetiology. Current drug therapy including L-type calcium channel antagonists, are used to manage symptoms in patients with overt HCM, but no treatment exists that can reverse or prevent the cardiomyopathy. Design of effective drug therapy will require a clear understanding of the early pathophysiological mechanisms of the disease. Numerous studies have investigated specific aspects of HCM pathophysiology. This review brings these findings together, in order to develop a holistic understanding of the early pathophysiological mechanisms of the disease. We focus on gene mutations in cardiac myosin binding protein-C, ß-cardiac myosin heavy chain, cardiac troponin I, and cardiac troponin T, that comprise the majority of all HCM sarcomeric gene mutations. We find that although some similarities exist, each mutation leads to mutation-specific alterations in calcium handling, myofilament calcium sensitivity and mitochondrial metabolic function. This may contribute to the observed clinical phenotypic variability in sarcomeric-related HCM. An understanding of early mutation-specific mechanisms of the disease may provide useful markers of disease progression, and inform therapeutic design.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Troponina T/metabolismo
17.
Sci Adv ; 5(12): eaay2118, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31903419

RESUMEN

Mammalian mitochondrial ribosomes are unique molecular machines that translate 11 leaderless mRNAs; however, it is not clear how mitoribosomes initiate translation, since mitochondrial mRNAs lack untranslated regions. Mitochondrial translation initiation shares similarities with prokaryotes, such as the formation of a ternary complex of fMet-tRNAMet, mRNA and the 28S subunit, but differs in the requirements for initiation factors. Mitochondria have two initiation factors: MTIF2, which closes the decoding center and stabilizes the binding of the fMet-tRNAMet to the leaderless mRNAs, and MTIF3, whose role is not clear. We show that MTIF3 is essential for survival and that heart- and skeletal muscle-specific loss of MTIF3 causes cardiomyopathy. We identify increased but uncoordinated mitochondrial protein synthesis in mice lacking MTIF3, resulting in loss of specific respiratory complexes. Ribosome profiling shows that MTIF3 is required for recognition and regulation of translation initiation of mitochondrial mRNAs and for coordinated assembly of OXPHOS complexes in vivo.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas/fisiología , Animales , Cardiomiopatía Dilatada/genética , Factor 3 de Iniciación Eucariótica/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
18.
JACC Basic Transl Sci ; 3(3): 391-402, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30062225

RESUMEN

Current clinical trials demonstrate Duchenne muscular dystrophy (DMD) patients receiving phosphorodiamidate morpholino oligomer (PMO) therapy exhibit improved ambulation and stable pulmonary function; however, cardiac abnormalities remain. Utilizing the same PMO chemistry as current clinical trials, we have identified a non-toxic PMO treatment regimen that restores metabolic activity and prevents DMD cardiomyopathy. We propose that a treatment regimen of this nature may have the potential to significantly improve morbidity and mortality from DMD by improving ambulation, stabilizing pulmonary function, and preventing the development of cardiomyopathy.

19.
Sci Rep ; 8(1): 12538, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135446

RESUMEN

Cell penetrating peptides (CPPs) offer great potential to deliver therapeutic molecules to previously inaccessible intracellular targets. However, many CPPs are inefficient and often leave their attached cargo stranded in the cell's endosome. We report a versatile platform for the isolation of peptides delivering a wide range of cargos into the cytoplasm of cells. We used this screening platform to identify multiple "Phylomer" CPPs, derived from bacterial and viral genomes. These peptides are amenable to conventional sequence optimization and engineering approaches for cell targeting and half-life extension. We demonstrate potent, functional delivery of protein, peptide, and nucleic acid analog cargos into cells using Phylomer CPPs. We validate in vivo activity in the cytoplasm, through successful transport of an oligonucleotide therapeutic fused to a Phylomer CPP in a disease model for Duchenne's muscular dystrophy. This report thus establishes a discovery platform for identifying novel, functional CPPs to expand the delivery landscape of druggable intracellular targets for biological therapeutics.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Animales , Bacteriófago T7 , Biotinilación , Células CHO , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/toxicidad , Dicroismo Circular , Cricetulus , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Microscopía Fluorescente , Distrofia Muscular de Duchenne/tratamiento farmacológico , Biblioteca de Péptidos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
20.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30126926

RESUMEN

The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs, and miRNAs identified the molecular targets of ELAC2 in vivo We show that ELAC2 is required for processing of tRNAs and for the balanced maintenance of C/D box snoRNAs, miRNAs, and a new class of tRNA fragments. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis and the assembly of mitochondrial ribosomes and cytoplasmic polysomes. We show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3' tRNA processing is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.


Asunto(s)
Endorribonucleasas/genética , Proteínas de Neoplasias/genética , ARN Mitocondrial/genética , ARN no Traducido/genética , Animales , Núcleo Celular/genética , Perfilación de la Expresión Génica , Ratones , MicroARNs/genética , ARN Nucleolar Pequeño/genética , ARN de Transferencia/genética , ARN no Traducido/clasificación , ARN no Traducido/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...