Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Gastroenterol ; 8: 24, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18554389

RESUMEN

BACKGROUND: Alterations in gene splicing occur in human sporadic colorectal cancer (CRC) and may contribute to tumour progression. The K-ras proto-oncogene encodes two splice variants, K-ras 4A and 4B, and K-ras activating mutations which jointly affect both isoforms are prevalent in CRC. Past studies have established that splicing of both the K-ras oncogene and proto-oncogene is altered in CRC in favour of K-ras 4B. The present study addressed whether the K-Ras 4A proto-oncoprotein can suppress tumour development in the absence of its oncogenic allele, utilising the ApcMin/+ (Min) mouse that spontaneously develops intestinal tumours that do not harbour K-ras activating mutations, and the K-rastmDelta4A/tmDelta4A mouse that can express the K-ras 4B splice variant only. By this means tumorigenesis in the small intestine was compared between ApcMin/+, K-ras+/+ and ApcMin/+, K-rastmDelta4A/tmDelta4A mice that can, and cannot, express the K-ras 4A proto-oncoprotein respectively. METHODS: The relative levels of expression of the K-ras splice variants in normal small intestine and small intestinal tumours were quantified by real-time RT-qPCR analysis. Inbred (C57BL/6) ApcMin/+, K-ras+/+ and ApcMin/+, K-rastmDelta4A/tmDelta4A mice were generated and the genotypes confirmed by PCR analysis. Survival of stocks was compared by the Mantel-Haenszel test, and tumour number and area compared by Student's t-test in outwardly healthy mice at approximately 106 and 152 days of age. DNA sequencing of codons 12, 13 and 61 was performed to confirm the intestinal tumours did not harbour a K-ras activating mutation. RESULTS: The K-ras 4A transcript accounted for about 50% of K-ras expressed in the small intestine of both wild-type and Min mice. Tumours in the small intestine of Min mice showed increased levels of K-ras 4B transcript expression, but no appreciable change in K-ras 4A transcript levels. No K-ras activating mutations were detected in 27 intestinal tumours derived from Min and compound mutant Min mice. K-Ras 4A deficiency did not affect mouse survival, or tumour number, size or histopathology. CONCLUSION: The K-Ras 4A proto-oncoprotein does not exhibit tumour suppressor activity in the small intestine, even though the K-ras 4A/4B ratio is reduced in adenomas lacking K-ras activating mutations.


Asunto(s)
Adenoma/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes ras/genética , Neoplasias Intestinales/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Animales Modificados Genéticamente , Genes APC/fisiología , Mutación de Línea Germinal/genética , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proto-Oncogenes Mas , Transcripción Genética
2.
Exp Cell Res ; 314(5): 1105-14, 2008 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-18062963

RESUMEN

To examine the roles of endogenous K-ras 4A and K-ras 4B splice variants in tumorigenesis, murine lung carcinogenesis was induced by N-methyl-N-nitrosourea (MNU), which causes a K-ras mutation (G12D) that jointly affects both isoforms. Compared with age-matched K-ras(tmDelta4A/-) mice (where tumours can express mutationally activated K-ras 4B only), tumour number and size were significantly higher in K-ras(+/-) mice (where tumours can also express mutationally activated K-ras 4A), and significantly lower in K-ras(tmDelta4A/tmDelta4A) mice (where tumours can express both wild-type and activated K-ras 4B). MNU induced significantly more, and larger, tumours in wild-type than K-ras(tmDelta4A/tmDelta4A) mice which differ in that only tumours in wild-type mice can express wild-type and activated K-ras 4A. Lung tumours in all genotypes were predominantly papillary adenomas, and tumours from K-ras(+/-) and K-ras(tmDelta4A/-) mice exhibited phospho-Erk1/2 and phospho-Akt staining. Hence (1) mutationally activated K-ras 4B is sufficient to activate the Raf/MEK/ERK(MAPK) and PI3-K/Akt pathways, and initiate lung tumorigenesis, (2) when expressed with activated K-ras 4B, mutationally activated K-ras 4A further promotes lung tumour formation and growth (both in the presence and absence of its wild-type isoform) but does not affect either tumour pathology or progression, and (3) wild-type K-ras 4B, either directly or indirectly, reduces tumour number and size.


Asunto(s)
Neoplasias Pulmonares/etiología , Proteínas Mutantes , Isoformas de Proteínas , Proteínas ras/genética , Animales , Progresión de la Enfermedad , Neoplasias Pulmonares/patología , Metilnitrosourea , Ratones , Ratones Noqueados , Mutagénesis/genética , Transducción de Señal , Carga Tumoral/genética , Proteínas ras/fisiología
3.
Transgenic Res ; 17(3): 459-75, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18040647

RESUMEN

Denys-Drash syndrome (DDS) is caused by heterozygous mutations of the Wilms' tumour suppressor gene, WT1, characterised by early-onset diffuse mesangial sclerosis often associated with male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that the Wt1tmT396 allele induces DDS kidney disease in mice. In the present study heterozygotes (Wt1tmT396/+) were generated on inbred (129/Ola), crossbred (B6/129) and MF1 second backcross (MF1-N2) backgrounds. Whereas male heterozygotes on each background were fertile, inbred heterozygous females were infertile. Kidney disease (proteinuria and sclerosis) was not congenital and developed significantly earlier in inbred mice, although with variable onset. Disease onset in MF1-N2 stocks occurred later in Wt1tmT396/+ mice than reported previously for Wt1R394W/+ mice, and while no kidney disease has been reported in B6/129 Wt1+/- mice, B6/129 Wt1tmT396/+ mice were affected. Offspring of both male and female B6/129 and MF1-N2 Wt1tmT396/+ mice developed kidney disease, but its incidence was significantly higher in offspring of female heterozygotes. Wt1tmT396/tmT396 embryos exhibited identical developmental abnormalities to those reported for Wt1-/- embryos. The results indicate that the Wt1 (tmT396) allele does not predispose to Wilms' tumourigenesis or male pseudohermaphroditism, its effect on kidney disease and female fertility depends on genetic background, stochastic factors may affect disease onset, and disease transmission is subject to a partial parent-of-origin effect. Since the Wt1tmT396 allele has no detectable intrinsic functional activity in vivo, and kidney disease progression is affected by the type of Wt1 mutation, the data support the view that DDS nephropathy results from a dominant-negative action rather than WT1 haploinsufficiency or gain-of-function.


Asunto(s)
Síndrome de Denys-Drash/genética , Fertilidad/genética , Marcación de Gen/métodos , Crecimiento y Desarrollo/genética , Enfermedades Renales/genética , Alelos , Animales , Clonación Molecular , Cruzamientos Genéticos , Embrión de Mamíferos , Femenino , Dosificación de Gen/fisiología , Genes Dominantes/fisiología , Pérdida de Heterocigocidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Proteínas WT1/genética
4.
Cloning Stem Cells ; 8(3): 174-88, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17009894

RESUMEN

Hybrid embryonic stem (ES)-like clones were generated by fusion of murine ES cells with somatic cells that carried a neo resistance gene under the transcriptional control of the Oct-4 promoter. The Oct-4 promoter was reactivated in hybrid ES cells formed by fusion with fetal fibroblasts, and all hybrid colonies were of ES rather than fibroblast phenotype, suggesting efficient reprogramming of fibroblast chromosomes. Like normal diploid murine ES cells, hybrid lines expressed alkaline phosphatase activity and formed differentiated cells derived from the three embryonic germ layers both in vitro and in vivo. Treatments thought to affect nuclear transfer efficiency (ES cell confluence and serum starvation of primary embryonic fibroblasts) were investigated to determine whether they had an effect on reprogramming in cell hybrids. Serum starvation of primary embryonic fibroblasts increased hybrid colony number 50-fold. ES cells were most effective at reprogramming when they contained a high proportion of cells in the S and G2/M phases of the cell cycle. These data suggest that nuclear reprogramming requires an initial round of somatic DNA replication of quiescent chromatin in the presence of ES-derived factors produced during S and G2/M phases.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Células Híbridas/citología , Células Madre Pluripotentes/citología , Fosfatasa Alcalina/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Núcleo Celular/genética , Medio de Cultivo Libre de Suero , Cartilla de ADN/genética , Replicación del ADN , Regulación de la Expresión Génica , Células Híbridas/metabolismo , Ratones , Fenotipo , Células Madre Pluripotentes/metabolismo
5.
Exp Cell Res ; 312(1): 16-26, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16271715

RESUMEN

Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras(tmDelta4A/tmDelta4A) (exon 4A knock-out) ES cells which express K-ras4B only and K-ras(-/-) (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras(tmDelta4A/tmDelta4A) mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras(tmDelta4A/tmDelta4A) ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras(tmDelta4A/tmDelta4A) and K-ras(-/-) ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras(-/-) cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras(tmDelta4A/tmDelta4A) ES cells were more resistant to etoposide-induced apoptosis than K-ras(-/-) cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice.


Asunto(s)
Envejecimiento/fisiología , Apoptosis , Genes ras/fisiología , Longevidad/fisiología , Neoplasias Experimentales/etiología , Animales , Diferenciación Celular , Proliferación Celular , Células Epiteliales/fisiología , Incidencia , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , Ratones Noqueados , Isoformas de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Células Madre/patología
6.
Mol Cell Biol ; 23(24): 9245-50, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645534

RESUMEN

In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.


Asunto(s)
Genes ras , Empalme Alternativo , Animales , Secuencia de Bases , ADN/genética , Femenino , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Isoformas de Proteínas/genética , Distribución Tisular
7.
Hum Mol Genet ; 12(18): 2379-94, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12915483

RESUMEN

Denys-Drash syndrome (DDS) is caused by dominant mutations of the Wilms' tumour suppressor gene, WT1, and characterized by a nephropathy involving diffuse mesangial sclerosis, male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that heterozygosity for the Wt1tmT396 mutation induces DDS in heterozygous and chimeric (Wt1tmT396/+<-->+/+) mice. In the present study, the fate of Wt1 mutant cells in chimeric kidneys was assessed by in situ marker analysis, and immunocytochemistry was used to re-examine the claim that glomerulosclerosis (GS) is caused by loss of WT1 and persistent Pax-2 expression by podocytes. Wt1 mutant cells colonized glomeruli efficiently, including podocytes, but some sclerotic glomeruli contained no detectable Wt1 mutant cells. The development of GS was preceded by widespread loss of ZO-1 signal in podocytes (even in kidneys where <5% of glomeruli contained Wt1 mutant podocytes), increased intra-renal renin expression, and de novo podocyte TGF-beta1 expression, but not podocyte Pax-2 expression or loss of WT1, synaptopodin, alpha-actinin-4 or nephrin expression. However, podocytes in partially sclerotic glomeruli that still expressed WT1 at high levels showed reduced vimentin expression, cell cycle re-entry, and re-expressed desmin, cytokeratin and Pax-2. The results suggest that: (i) GS is not due to loss of WT1 expression by podocytes; (ii) podocyte Pax-2 expression reflects re-expression rather than persistent expression, and is the consequence of GS; (iii) GS is mediated systemically and the mechanism involves activation of the renin-angiotensin system; and (iv) podocytes undergo typical maturational changes but subsequently de-differentiate and revert to an immature phenotype during disease progression.


Asunto(s)
Diferenciación Celular , Síndrome de Denys-Drash/genética , Glomerulonefritis/fisiopatología , Glomérulos Renales/citología , Proteínas WT1/metabolismo , Animales , ADN , Expresión Génica , Genes Dominantes , Genes Supresores de Tumor , Marcadores Genéticos , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glucosa-6-Fosfato Isomerasa/análisis , Heterocigoto , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Fosfoproteínas/metabolismo , Renina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Proteínas WT1/genética , Proteína de la Zonula Occludens-1
8.
J Chromatogr Sci ; 41(1): 1-5, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12597588

RESUMEN

A simple, rapid, and accurate method for the separation and determination of ephedrine and pseudoephedrine using direct UV absorbance detection has been developed by the combination of flow injection with capillary electrophoresis for the first time. The buffer solution used is a 40 mM borate solution with the pH adjusted to 9.5 using a 2 M NaOH solution. The linear calibration range is 50 to 1000 microg/mL (r = 0.9996) for both analytes, and the recoveries are 91.2-108.2% for ephedrine and 92.6-107.3% for pseudoephedrine, respectively. The relative standard deviation of the peak area is 1.6% for ephedrine and 1.3% for pseudoephedrine (n = 6) at a concentration of 500 microg/mL, respectively. A series of samples is injected repeatedly without current interruption and subsequent rinsing, and the contents of these two alkaloids in three marketed drugs and the medical plant, Ephedra sinica, are determined with satisfactory results by this method.


Asunto(s)
Electroforesis Capilar/métodos , Efedrina/aislamiento & purificación , Análisis de Inyección de Flujo/métodos , Calibración , Ephedra/química , Efedrina/análisis , Extractos Vegetales/química , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta
9.
J Air Waste Manag Assoc ; 53(12): 1490-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14700135

RESUMEN

Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 microm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 microg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 microg/m3. The highest PM10 level occurred during the winter period (November-February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydrocarbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 microm.


Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Movimientos del Aire , Contaminación del Aire/prevención & control , Ciudades , Ambiente , Monitoreo del Ambiente , Tamaño de la Partícula , Tailandia
10.
Oncogene ; 21(30): 4696-701, 2002 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12096346

RESUMEN

Mutations in the tumour suppressor genes SMAD4 (DPC4, deleted in pancreatic cancer locus 4) and adenomatous polyposis coli (APC) have been implicated in the development of pancreatic cancer in humans. Treatment of wild-type, Smad4(+/-), Apc(Min/+) or Apc(Min/+)Smad4(+/-) mice with N-Nitroso-N-Methyl Urea (NMU) results in abnormal foci in pancreatic acinar cells characterized by increased levels of beta-catenin. Previously such foci have been shown to be the precursors of pancreatic neoplasia. Interestingly, only NMU-treated Apc(Min/+)Smad4(+/-) mice exhibit a significant increase in abnormal pancreas, which was found to be due to increased number of abnormal foci rather than increased focus size. A range of foci sizes were analysed, but only smaller abnormal foci were characterized by morphological nuclear atypia. These studies suggest functional co-operation between TGF-beta and Wnt signalling pathways in the suppression of pancreatic tumorigenesis in the mouse.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Carcinógenos/toxicidad , Proteínas de Unión al ADN/genética , Metilnitrosourea/toxicidad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transactivadores/genética , Proteínas de Pez Cebra , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , División Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Genotipo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Mutación , Neoplasias Pancreáticas/inducido químicamente , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad4 , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proteínas Wnt , beta Catenina
11.
Rouxs Arch Dev Biol ; 198(1): 48-56, 1989 May.
Artículo en Inglés | MEDLINE | ID: mdl-28305783

RESUMEN

The derivation of a karyotypically normal embryonal stem (ES) cell line, E14, from inner cell masses (ICMs) isolated by immunosurgery from 129/Ola late mouse blastocysts is described. Disaggregated ICMs were cultured on mitotically-arrested fibroblast feeder layers in droplets of medium conditioned with Buffalo rat liver (BRL) cells under oil. BRL-conditioned medium inhibits the differentiation of established embryonal carcinoma (EC) and ES cell lines which can be maintained indefinitely in the complete absence of feeder cells (Smith and Hooper 1987). At clonal densities, however, a combination of BRL-conditioned medium and a feeder layer was most effective in preventing the differentiation of E14 cells. This effect was less pronounced at higher passage suggesting it may be particularly important to use a combination in the early stages of isolation. Once established, E14 has been maintained in BRL-conditioned medium alone. In non-conditioned medium on agarose, E14 cells formed embryoid bodies which when allowed to reattach differentiated into a wide variety of tissues. An HPRT-deficient sub line of E14, E14TG2a, has been demonstrated to form germline chimaeras with high efficiency after injection into blastocysts (Hooper et al. 1987). The modifications to the ES cell isolation procedure described here may improve the efficiency with which karyotypically normal lines can be derived.

12.
Rouxs Arch Dev Biol ; 196(3): 185-190, 1987 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28305842

RESUMEN

Immunosurgical isolation of inner cell masses (ICMs) from sheep embryos was most efficient at the expanded, zona-intact blastocyst stage (day 7 to 8 post oestrus) before migration of endoderm cells beyond the boundary of the ICM across the blastocoelic surface of the trophectoderm. When cultured under conditions which allow the isolation of embryonal stem (ES) cell lines from mouse ICMs, sheep ICMs attached, spread and developed areas of both ES cell-like and endoderm-like cells. After prolonged culture only endoderm-like cells were evident. The implications for the isolation of ES cell lines from sheep embryos and possible species-specific requirements are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...