Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 79: 554-563, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30343787

RESUMEN

Rare Earth Elements (REE) are essential elements in many new technology products. Up to now, recycling is poorly established and no environmentally friendly strategies are applied. Modern biotechnologies like bioleaching can contribute to overcome the current limitations. In this study, we investigated bioleaching approaches exemplary for fluorescent phosphor (FP), which is accumulated during the recycling of fluorescent tubes and energy saving bulbs. A broad spectrum of different microorganisms were tested regarding their potential to leach REE from FP. Among them were classical acidophilic microorganisms, as well as various heterotrophic ones, producing organic acids or metal complexing metabolites, or having a high metal tolerance. Larger amounts of REE were leached with the strains Komagataeibacter xylinus, Lactobacillus casei, and Yarrowia lipolytica. Besides the COOH-functionality, also other biotic processes contribute to metal leaching, as comparison with indirect leaching approaches showed. Among the different REE components of the FP preferably the oxidic red dye yttrium europium oxide (YOE) that contain the critical REE yttrium and europium was leached. The results provide the basis for the development of an environmentally friendly recycling process for REE from waste materials.


Asunto(s)
Metales de Tierras Raras , Europio , Metales , Polvos , Reciclaje , Residuos
2.
Waste Manag ; 62: 211-221, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28223076

RESUMEN

In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y2O3:Eu2+ containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic chemicals.


Asunto(s)
Biodegradación Ambiental , Residuos Electrónicos , Hongos/fisiología , Metales de Tierras Raras/análisis , Eliminación de Residuos/métodos , Alemania , Té de Kombucha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA