Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0281045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36897852

RESUMEN

Reactive oxygen species (ROS) are a contributing factor to impaired function and pathology after spinal cord injury (SCI). The NADPH oxidase (NOX) enzyme is a key source of ROS; there are several NOX family members, including NOX2 and NOX4, that may play a role in ROS production after SCI. Previously, we showed that a temporary inhibition of NOX2 by intrathecal administration of gp91ds-tat immediately after injury improved recovery in a mouse SCI model. However, chronic inflammation was not affected by this single acute treatment, and other NOX family members were not assessed. Therefore, we aimed to explore the effect of genetic knockout (KO) of NOX2 or acute inhibition of NOX4 with GKT137831. A moderate SCI contusion injury was performed in 3 month old NOX2 KO and wild-type (WT) mice, who received no treatment or GKT137831/vehicle 30 minutes post-injury. Motor function was assessed using the Basso Mouse Scale (BMS), followed by evaluation of inflammation and oxidative stress markers. NOX2 KO mice, but not GKT137831 treated mice, demonstrated significantly improved BMS scores at 7, 14, and 28 days post injury (DPI) in comparison to WT mice. However, both NOX2 KO and GKT137831 significantly reduced ROS production and oxidative stress markers. Furthermore, a shift in microglial activation toward a more neuroprotective, anti-inflammatory state was observed in KO mice at 7 DPI and a reduction of microglial markers at 28 days. While acute alterations in inflammation were noted with GKT137831 administration, this was not sustained through 28 days. In vitro analysis also showed that while GKT137831 reduced ROS production by microglia, it did not translate to changes in pro-inflammatory marker expression within these cells. These data demonstrate that NOX2 and NOX4 play a role in post-injury ROS, but a single dose of NOX4 inhibitor fails to enhance long-term recovery.


Asunto(s)
Roedores , Traumatismos de la Médula Espinal , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/metabolismo , Traumatismos de la Médula Espinal/patología , Ratones Noqueados , NADPH Oxidasa 4/metabolismo
2.
Front Med (Lausanne) ; 9: 1034692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405593

RESUMEN

Inflammation is a primary component of the central nervous system injury response. Traumatic brain and spinal cord injury are characterized by a pronounced microglial response to damage, including alterations in microglial morphology and increased production of reactive oxygen species (ROS). The acute activity of microglia may be beneficial to recovery, but continued inflammation and ROS production is deleterious to the health and function of other cells. Microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), mitochondria, and changes in iron levels are three of the most common sources of ROS. All three play a significant role in post-traumatic brain and spinal cord injury ROS production and the resultant oxidative stress. This review will evaluate the current state of therapeutics used to target these avenues of microglia-mediated oxidative stress after injury and suggest avenues for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA