Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Mol Cell Proteomics ; 22(12): 100666, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839702

RESUMEN

The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-EM to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance, and amino acid metabolism. Our methodology also identified multiple distinct members of the acyl-CoA dehydrogenase family. This work highlights the potential of cryo-EM to explore tissue proteomics at the atomic level.


Asunto(s)
Mitocondrias , Proteómica , Humanos , Mitocondrias/metabolismo , Hígado/metabolismo , Oxidación-Reducción
2.
Aging Cell ; 22(7): e13852, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37101412

RESUMEN

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.


Asunto(s)
Hiperamonemia , Sirtuina 3 , Sirtuinas , Humanos , Ratones , Animales , Sirtuinas/metabolismo , Sirtuina 3/metabolismo , Hiperamonemia/metabolismo , Amoníaco/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Acetilación
3.
Mol Genet Metab ; 136(2): 125-131, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35606253

RESUMEN

OBJECTIVE: To harmonize terminology in mitochondrial medicine, we propose revised clinical criteria for primary mitochondrial syndromes. METHODS: The North American Mitochondrial Disease Consortium (NAMDC) established a Diagnostic Criteria Committee comprised of members with diverse expertise. It included clinicians, researchers, diagnostic laboratory directors, statisticians, and data managers. The Committee conducted a comprehensive literature review, an evaluation of current clinical practices and diagnostic modalities, surveys, and teleconferences to reach consensus on syndrome definitions for mitochondrial diseases. The criteria were refined after manual application to patients enrolled in the NAMDC Registry. RESULTS: By building upon published diagnostic criteria and integrating recent advances, NAMDC has generated updated consensus criteria for the clinical definition of classical mitochondrial syndromes. CONCLUSIONS: Mitochondrial diseases are clinically, biochemically, and genetically heterogeneous and therefore challenging to classify and diagnose. To harmonize terminology, we propose revised criteria for the clinical definition of mitochondrial disorders. These criteria are expected to standardize the diagnosis and categorization of mitochondrial diseases, which will facilitate future natural history studies and clinical trials.


Asunto(s)
Enfermedades Mitocondriales , Consenso , Humanos , Enfermedades Mitocondriales/diagnóstico , América del Norte , Sistema de Registros , Síndrome
4.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453240

RESUMEN

Despite its use for decades, pharmacokinetic (PK) and safety studies on colistin are limited. We conducted a phase l, open-label trial to evaluate the safety and PK of multiple doses of intravenous (IV) and aerosolized colistimethate sodium (CMS) administered separately and in combination. In total, 31 healthy adults were enrolled into three cohorts of 9, 10, and 12 participants, respectively. Each cohort received increasing doses of CMS over three dosing periods as follows: Period 1 (IV only), 2.5 mg/kg every 12 h (q12h) to 3.3 mg/kg every 8 h (q8h); Period 2 (aerosolized only), 75 mg 2-4 doses, and Period 3 (combined IV aerosolized), in which was Periods 1 and 2 combined. Safety assessments, serum and lung concentrations of colistin analytes (colistin A, colistin B, CMS A, and CMS B), and kidney biomarkers were measured at specified time points. Increasing the CMS dose from 2.5 mg/kg q12h to q8h resulted in a 33% increase in serum colistin A concentrations from 3.9 µg/mL to 5.3 µg/mL-well above the accepted target of 2 µg/mL for 6 h after dosing, without evidence of nephrotoxicity. However, there was an increase in neurotoxicity, primarily perioral and lingual paresthesias, and self-limited ataxia. IV administration did not increase the lung concentrations of colistin.

5.
J Cachexia Sarcopenia Muscle ; 13(3): 1821-1836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304976

RESUMEN

BACKGROUND: Sarcopenic obesity is a highly prevalent disease with poor survival and ineffective medical interventions. Mitochondrial dysfunction is purported to be central in the pathogenesis of sarcopenic obesity by impairing both organelle biogenesis and quality control. We have previously identified that a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 is orally available and selectively lowers respiratory coupling efficiency and protects against diet-induced obesity in mice. Here, we tested the hypothesis that mitochondrial uncoupling simultaneously attenuates loss of muscle function and weight gain in a mouse model of sarcopenic obesity. METHODS: Eighty-week-old male C57BL/6J mice with obesity were randomized to 10 weeks of high fat diet (CTRL) or BAM15 (BAM15; 0.1% w/w in high fat diet) treatment. Body weight and food intake were measured weekly. Body composition, muscle function, energy expenditure, locomotor activity, and glucose tolerance were determined after treatment. Skeletal muscle was harvested and evaluated for histology, gene expression, protein signalling, and mitochondrial structure and function. RESULTS: BAM15 decreased body weight (54.0 ± 2.0 vs. 42.3 ± 1.3 g, P < 0.001) which was attributable to increased energy expenditure (10.1 ± 0.1 vs. 11.3 ± 0.4 kcal/day, P < 0.001). BAM15 increased muscle mass (52.7 ± 0.4 vs. 59.4 ± 1.0%, P < 0.001), strength (91.1 ± 1.3 vs. 124.9 ± 1.2 g, P < 0.0001), and locomotor activity (347.0 ± 14.4 vs. 432.7 ± 32.0 m, P < 0.001). Improvements in physical function were mediated in part by reductions in skeletal muscle inflammation (interleukin 6 and gp130, both P < 0.05), enhanced mitochondrial function, and improved endoplasmic reticulum homeostasis. Specifically, BAM15 activated mitochondrial quality control (PINK1-ubiquitin binding and LC3II, P < 0.01), increased mitochondrial activity (citrate synthase and complex II activity, all P < 0.05), restricted endoplasmic reticulum (ER) misfolding (decreased oligomer A11 insoluble/soluble ratio, P < 0.0001) while limiting ER stress (decreased PERK signalling, P < 0.0001), apoptotic signalling (decreased cytochrome C release and Caspase-3/9 activation, all P < 0.001), and muscle protein degradation (decreased 14-kDa actin fragment insoluble/soluble ratio, P < 0.001). CONCLUSIONS: Mitochondrial uncoupling by agents such as BAM15 may mitigate age-related decline in muscle mass and function by molecular and cellular bioenergetic adaptations that confer protection against sarcopenic obesity.


Asunto(s)
Sarcopenia , Animales , Peso Corporal , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Obesidad/complicaciones , Sarcopenia/metabolismo
6.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935641

RESUMEN

Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype-increased ß-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.


Asunto(s)
Reprogramación Celular/fisiología , Hiperamonemia/terapia , Mitocondrias/metabolismo , Mitosis/fisiología , Proteómica/métodos , Animales , Ratas
7.
Sci Rep ; 11(1): 22106, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764359

RESUMEN

O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.


Asunto(s)
Acilación/genética , Acilación/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glicosilación , Células HCT116 , Humanos , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferasas/genética , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal/genética
8.
Cancer Metab ; 9(1): 36, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627389

RESUMEN

BACKGROUND: Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS: The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS: BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS: Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.

9.
J Biol Chem ; 297(4): 101196, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529976

RESUMEN

Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.


Asunto(s)
Señalización del Calcio , Dinaminas/metabolismo , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales , Línea Celular , Dinaminas/genética , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Humanos , Mitocondrias Musculares/genética , Oxidación-Reducción
10.
Mitochondrion ; 60: 112-120, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34384933

RESUMEN

Cardiac arrest (CA) induces whole-body ischemia resulting in mitochondrial dysfunction. We used isolated mitochondria to examine phospholipid alterations in the brain, heart, kidney, and liver post-CA. Our data shows that ischemia/reperfusion most significantly alters brain mitochondria phospholipids, predominately after resuscitation. Furthermore, the alterations do not appear to be a function of dysregulated importation of phospholipids, but caused by impaired intra-mitochondrial synthesis and/or remodeling of phospholipids. Our data demonstrates only brain mitochondria undergo significant alterations in phospholipids, providing a rationale for the high vulnerability of the brain to ischemia/reperfusion. Furthermore, analyzing this pathophysiologic state provides insight into physiologic mitochondrial phospholipid metabolism.


Asunto(s)
Encéfalo/metabolismo , Paro Cardíaco/metabolismo , Mitocondrias/metabolismo , Miocardio/metabolismo , Fosfolípidos/metabolismo , Animales , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
11.
Nurs Res ; 70(6): 475-480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34380980

RESUMEN

BACKGROUND: Cancer-related fatigue (CRF) is a highly prevalent, debilitating, and persistent symptom experienced by patients receiving cancer treatments. Up to 71% of men with prostate cancer receiving radiation therapy experience acute and persistent CRF. There is neither an effective therapy nor a diagnostic biomarker for CRF. This pilot study aimed to discover potential biomarkers associated with chronic CRF in men with prostate cancer receiving radiation therapy. METHODS: We used a longitudinal repeated-measures research design. Twenty men with prostate cancer undergoing radiation therapy completed all study visits. CRF was evaluated by a well-established and validated questionnaire, the Patient-Reported Outcomes Measurement Information System for Fatigue (PROMIS-F) Short Form. In addition, peripheral blood mononuclear cells were harvested to quantify ribonucleic acid (RNA) gene expression of mitochondria-related genes. Data were collected before, during, on completion, and 24 months postradiation therapy and analyzed using paired t-tests and repeated-measures analysis of variance. RESULTS: The mean of the PROMIS-F T score was significantly increased over time in patients with prostate cancer, remaining elevated at 24 months postradiation therapy compared to baseline. A significant downregulated BC1 ubiquinol-cytochrome c reductase synthesis-like (BCS1L) was observed over time during radiation therapy and at 24 months postradiation therapy. An increased PROMIS-F score was trended with downregulated BCS1L in patients 24 months after completing radiation therapy. DISCUSSION: This is the first evidence to describe altered messenger RNA for BCS1L in chronic CRF using the PROMIS-F measure with men receiving radiation therapy for prostate cancer. CONCLUSION: Our results suggest that peripheral blood mononuclear cell messenger RNA for BCS1L is a potential biomarker and therapeutic target for radiation therapy-induced chronic CRF in this clinical population.


Asunto(s)
Biomarcadores/sangre , Metabolismo Energético , Fatiga/diagnóstico , Fatiga/etiología , Leucocitos Mononucleares , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/radioterapia , Anciano , Enfermedad Crónica , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proyectos Piloto , Encuestas y Cuestionarios
12.
Metabolism ; 121: 154803, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34090870

RESUMEN

BACKGROUND AND AIMS: A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS: 19 healthy adults (age:28.4 ±â€¯1.7 years; BMI:22.7 ±â€¯0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS: Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS: These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT02697201, ClinicalTrials.gov.


Asunto(s)
Insulina/metabolismo , Lípidos/farmacología , Mitocondrias Musculares/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Adulto , Biopsia , Respiración de la Célula/efectos de los fármacos , Emulsiones/administración & dosificación , Emulsiones/farmacología , Ácidos Grasos/administración & dosificación , Ácidos Grasos/farmacología , Femenino , Técnica de Clampeo de la Glucosa , Voluntarios Sanos , Humanos , Infusiones Intravenosas , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Lípidos/administración & dosificación , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias Musculares/patología , Mitocondrias Musculares/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosfolípidos/administración & dosificación , Fosfolípidos/farmacología , Aceite de Soja/administración & dosificación , Aceite de Soja/farmacología
13.
Am J Physiol Endocrinol Metab ; 320(5): E864-E873, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645254

RESUMEN

Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women (N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% (P = 0.001) and increased fasting serum C4 concentrations by 55% (P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss.NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Biomarcadores/sangre , Ejercicio Físico/fisiología , Obesidad/metabolismo , Pérdida de Peso/fisiología , Adulto , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/sangre , Biomarcadores/metabolismo , Glucemia/metabolismo , Dieta Reductora , Terapia por Ejercicio , Femenino , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Persona de Mediana Edad , Obesidad/sangre , Obesidad/terapia , Regulación hacia Arriba
14.
Anesth Analg ; 133(4): 924-932, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591116

RESUMEN

BACKGROUND: Children with mitochondrial disease undergo anesthesia for a wide array of surgical procedures. However, multiple medications used for their perioperative care can affect mitochondrial function. Defects in function of the mitochondrial electron transport chain (ETC) can lead to a profound hypersensitivity to sevoflurane in children. We studied the sensitivities to sevoflurane, during mask induction and maintenance of general anesthesia, in children presenting for muscle biopsies for diagnosis of mitochondrial disease. METHODS: In this multicenter study, 91 children, aged 6 months to 16 years, presented to the operating room for diagnostic muscle biopsy for presumptive mitochondrial disease. General anesthesia was induced by a slow increase of inhaled sevoflurane concentration. The primary end point, end-tidal (ET) sevoflurane necessary to achieve a bispectral index (BIS) of 60, was recorded. Secondary end points were maximal sevoflurane used to maintain a BIS between 40 and 60 during the case, and maximum and minimum heart rate and blood pressures. After induction, general anesthesia was maintained according to the preferences of the providers directing the cases. Primary data were analyzed comparing data from patients with complex I deficiencies to other groups using nonparametric statistics in SPSS v.27. RESULTS: The median sevoflurane concentration to reach BIS of 60 during inductions (ET sevoflurane % [BIS = 60]) was significantly lower for patients with complex I defects (0.98%; 95% confidence interval [CI], 0.5-1.4) compared to complex II (1.95%; 95% CI, 1.2-2.7; P < .001), complex III (2.0%; 95% CI, 0.7-3.5; P < .001), complex IV (2.0%; 95% CI, 1.7-3.2; P < .001), and normal groups (2.2%; 95% CI, 1.8-3.0; P < .001). The sevoflurane sensitivities of complex I patients did not reach significance when compared to patients diagnosed with mitochondrial disease but without an identifiable ETC abnormality (P = .172). Correlation of complex I activity with ET sevoflurane % (BIS = 60) gave a Spearman's coefficient of 0.505 (P < .001). The differences in sensitivities between groups were less during the maintenance of the anesthetic than during induction. CONCLUSIONS: The data indicate that patients with complex I dysfunction are hypersensitive to sevoflurane compared to normal patients. Hypersensitivity was less common in patients presenting with other mitochondrial defects or without a mitochondrial diagnosis.


Asunto(s)
Anestesia General/efectos adversos , Anestésicos por Inhalación/efectos adversos , Hipersensibilidad a las Drogas/etiología , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/complicaciones , Músculo Esquelético/enzimología , Sevoflurano/efectos adversos , Adolescente , Factores de Edad , Anestésicos por Inhalación/administración & dosificación , Biopsia , Estudios de Casos y Controles , Niño , Preescolar , Hipersensibilidad a las Drogas/diagnóstico , Femenino , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/enzimología , Músculo Esquelético/patología , Ohio , Medición de Riesgo , Factores de Riesgo , Sevoflurano/administración & dosificación , Resultado del Tratamiento , Washingtón
15.
Clin Infect Dis ; 73(3): e765-e772, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564870

RESUMEN

BACKGROUND: Neurocognitive impairment (NCI) is associated with monocyte activation in people with HIV (PWH). Activated monocytes increase glycolysis, reduce oxidative phosphorylation, and accumulate citrate and succinate, tricarboxylic acid (TCA) cycle metabolites that promote inflammation-this metabolic shift may contribute to NCI and slowed gait speed in PWH. METHODS: Plasma citrate and succinate were assayed by liquid chromatography-mass spectrometry from 957 participants upon entry to a multicenter, prospective cohort of older PWH. Logistic, linear, and mixed-effects linear regression models were used to examine associations between entry/baseline TCA cycle metabolites and cross-sectional and longitudinal NCI, neuropsychological test scores (NPZ-4), and gait speed. RESULTS: Median age was 51 (range 40-78) years. Each 1 standard deviation (SD) citrate increment was associated with 1.18 higher odds of prevalent NCI at baseline (P = .03), 0.07 SD lower time-updated NPZ-4 score (P = .01), and 0.02 m/s slower time-updated gait speed (P < .0001). Age accentuated these effects. In the oldest age-quartile, higher citrate was associated with 1.64 higher odds of prevalent NCI, 0.17 SD lower NPZ-4, and 0.04 m/s slower gait speed (P ≤ .01 for each). Similar associations were apparent with succinate in the oldest age-quintile, but not with gait speed. In participants without NCI at entry, higher citrate predicted a faster rate of neurocognitive decline. CONCLUSIONS: Higher plasma citrate and succinate are associated with worse cross-sectional and longitudinal measures of neurocognitive function and gait speed that are age-dependent, supporting the importance of altered bioenergetic metabolism in the pathogenesis of NCI in older PWH.


Asunto(s)
Infecciones por VIH , Ácido Succínico , Adulto , Anciano , Ácido Cítrico , Estudios Transversales , Infecciones por VIH/complicaciones , Humanos , Persona de Mediana Edad , Estudios Prospectivos
16.
PLoS One ; 15(12): e0242445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33301490

RESUMEN

Acyl-CoA dehydrogenase 10 (Acad10)-deficient mice develop impaired glucose tolerance, peripheral insulin resistance, and abnormal weight gain. In addition, they exhibit biochemical features of deficiencies of fatty acid oxidation, such as accumulation of metabolites consistent with abnormal mitochondrial energy metabolism and fasting induced rhabdomyolysis. ACAD10 has significant expression in mouse brain, unlike other acyl-CoA dehydrogenases (ACADs) involved in fatty acid oxidation. The presence of ACAD10 in human tissues was determined using immunohistochemical staining. To characterize the effect of ACAD10 deficiency on the brain, micro-MRI and neurobehavioral evaluations were performed. Acad10-deficient mouse behavior was examined using open field testing and DigiGait analysis for changes in general activity as well as indices of gait, respectively. ACAD10 protein was shown to colocalize to mitochondria and peroxisomes in lung, muscle, kidney, and pancreas human tissue. Acad10-deficient mice demonstrated subtle behavioral abnormalities, which included reduced activity and increased time in the arena perimeter in the open field test. Mutant animals exhibited brake and propulsion metrics similar to those of control animals, which indicates normal balance, stability of gait, and the absence of significant motor impairment. The lack of evidence for motor impairment combined with avoidance of the center of an open field arena and reduced vertical and horizontal exploration are consistent with a phenotype characterized by elevated anxiety. These results implicate ACAD10 function in normal mouse behavior, which suggests a novel role for ACAD10 in brain metabolism.


Asunto(s)
Acil-CoA Deshidrogenasa/genética , Ansiedad/genética , Encéfalo/enzimología , Metabolismo Energético/genética , Mitocondrias/enzimología , Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/metabolismo , Animales , Ansiedad/enzimología , Ansiedad/fisiopatología , Conducta Animal , Encéfalo/diagnóstico por imagen , Carnitina/análogos & derivados , Carnitina/metabolismo , Marcha/fisiología , Humanos , Riñón/enzimología , Hígado/enzimología , Pulmón/enzimología , Imagen por Resonancia Magnética , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Páncreas/enzimología , Peroxisomas/enzimología
17.
J Lipid Res ; 61(12): 1707-1719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32998976

RESUMEN

Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species.


Asunto(s)
Cromatografía Líquida de Alta Presión , Mitocondrias Cardíacas/química , Fosfolípidos/análisis , Espectrometría de Masas en Tándem , Animales , Bovinos
18.
Physiol Rep ; 8(17): e14547, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32869956

RESUMEN

Very little is known about how metabolic health status, insulin resistance or metabolic challenges modulate the endocannabinoid (eCB) or polyunsaturated fatty acid (PUFA)-derived oxylipin (OxL) lipid classes. To address these questions, plasma eCB and OxL concentrations were determined at rest, 10 and 20 min during an acute exercise bout (30 min total, ~45% of preintervention V̇O2peak , ~63 W), and following 20 min recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled diet conditions. We hypothesized that increased fitness and insulin sensitivity following a ~14-week training and weight loss intervention would lead to significant changes in lipid signatures using an identical acute exercise protocol to preintervention. In the first 10 min of exercise, concentrations of a suite of OxL diols and hydroxyeicosatetraenoic acid (HETE) metabolites dropped significantly. There was no increase in 12,13-DiHOME, previously reported to increase with exercise and proposed to activate muscle fatty acid uptake and tissue metabolism. Following weight loss intervention, exercise-associated reductions were more pronounced for several linoleate and alpha-linolenate metabolites including DiHOMEs, DiHODEs, KODEs, and EpODEs, and fasting concentrations of 9,10-DiHODE, 12,13-DiHODE, and 9,10-DiHOME were reduced. These findings suggest that improved metabolic health modifies soluble epoxide hydrolase, cytochrome P450 epoxygenase (CYP), and lipoxygenase (LOX) systems. Acute exercise led to reductions for most eCB metabolites, with no evidence for concentration increases even at recovery. It is proposed that during submaximal aerobic exercise, nonoxidative fates of long-chain saturated, monounsaturated, and PUFAs are attenuated in tissues that are important contributors to the blood OxL and eCB pools.


Asunto(s)
Terapia por Ejercicio/métodos , Obesidad/terapia , Oxilipinas/sangre , Programas de Reducción de Peso/métodos , Adulto , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/sangre , Epóxido Hidrolasas/sangre , Femenino , Humanos , Resistencia a la Insulina , Ácido Linoleico/sangre , Lipooxigenasa/sangre , Persona de Mediana Edad , Obesidad/sangre , Conducta Sedentaria
19.
Front Physiol ; 11: 677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612543

RESUMEN

AIM: Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. METHODS: Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. RESULTS: CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). CONCLUSION: With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.

20.
EMBO Mol Med ; 12(7): e12088, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519812

RESUMEN

Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.


Asunto(s)
Glucosa/metabolismo , Control Glucémico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control , Desacopladores/farmacología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Control Glucémico/métodos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...