Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Ecol ; 93(3): 281-293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243658

RESUMEN

The loose-equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change. Long-lived, slow-growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long-lived animals because they can live >50 years and occur in dense, species-rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers. We used long-term data sets (10-40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC. Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species. Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.


Asunto(s)
Bivalvos , Peces , Animales , Agua Dulce , Ríos , Ecosistema
2.
Sci Data ; 10(1): 745, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891169

RESUMEN

The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.


Asunto(s)
Bivalvos , Unionidae , Animales , Ecosistema , Agua Dulce , Filogenia , Unionidae/genética , Estados Unidos
3.
Mol Ecol ; 32(22): 5894-5912, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37203688

RESUMEN

Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.


Asunto(s)
Bivalvos , Unionidae , Humanos , Animales , Metagenómica , Biodiversidad , Agua Dulce , Ríos , Bivalvos/genética , Ecosistema
4.
Front Microbiol ; 13: 800061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444631

RESUMEN

The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success.

5.
Ecol Evol ; 12(3): e8737, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342574

RESUMEN

This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasive C. fluminea (hereafter Corbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [ NH 4 + ], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasive Corbicula within mussel beds. We found that Corbicula were more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale, Corbicula densities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column NH 4 + increased at reaches with more urban land cover. No land cover variables influenced Corbicula populations or mussel communities. The strong overlapping distribution of Corbicula and mussels support the hypothesis that Corbicula are not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. Whether Corbicula is facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap between Corbicula and native mussels.

6.
Oecologia ; 188(4): 1133-1144, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30343403

RESUMEN

Animals can play important roles in cycling nutrients [hereafter consumer-driven nutrient dynamics (CND)], but researchers typically simplify animal communities inhabiting dynamic environments into single groups that are tested under relatively static conditions. We propose a conceptual framework and present empirical evidence for CND that considers the potential effects of spatially overlapping animal groups within dynamic ecosystems. Because streams can maintain high biomass of mussels and fish, we were able to evaluate this framework by testing if biogeochemical hotspots generated by stable aggregations of mussels attract fishes. We predicted that spatial overlap between these groups may increase the flux of mineralized nutrients. We quantified how different fish assemblage biomass was between mussel bed reaches and reaches without mussels. We compared fish and mussel biomass at mussel beds to test whether differences in animal biomass mediate their contributions to nutrient cycling through nitrogen and phosphorous excretion. We estimated areal excretion rates for each group by combining biomass estimates with measured excretion rates. Fish biomass was homogeneously distributed, except following a period of low flow when fish were more concentrated at mussel beds. Mussel biomass was consistently an order of magnitude greater than fish biomass and mussel areal excretion rates exceeded fish excretion rates. However, the magnitude of those differences varied spatially and temporally. Mussel excretion stoichiometry varied with changes in assemblage composition, while fish excretion stoichiometry varied little. Biogeochemical hotspots associated with mussels did not generally overlap with fish aggregations, thus, under these conditions, animal processes appear to exert additive ecosystem effects.


Asunto(s)
Bivalvos , Ríos , Animales , Biomasa , Ecosistema , Peces , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...