Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37560121

RESUMEN

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

2.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798371

RESUMEN

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

3.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229071

RESUMEN

In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales , Animales , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Prolina , Serina
4.
Methods Mol Biol ; 2159: 129-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529368

RESUMEN

Dynamin-related proteins on both the mitochondrial outer and inner membranes mediate membrane fusion. Mitochondrial fusion is regulated in many different physiological contexts including cell cycle progression, differentiation pathways, stress responses, and cell death. Mitochondrial fusion is opposed by mitochondrial division and requires movement of mitochondria on microtubules. We developed a cell-free reconstituted mitochondrial fusion assay to circumvent the complexity of the pathways impinging on the activity of the mitochondrial fusion machinery in vivo. This allows for quantification of mitochondrial fusion in defined conditions and in the absence of other processes such as mitochondrial division or transport. The impact of proteins or small molecules on mitochondria fusion can also be assessed. Here we describe the cell-free mitochondrial fusion assay using mitochondria isolated from mouse embryonic fibroblasts.


Asunto(s)
Microscopía Fluorescente , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Biomarcadores , Fraccionamiento Celular , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Fusión de Membrana , Ratones , Proteínas Mitocondriales/metabolismo , Imagen Molecular
5.
Life Sci Alliance ; 3(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32245838

RESUMEN

Mitofusins are members of the dynamin-related protein family of large GTPases that harness the energy from nucleotide hydrolysis to remodel membranes. Mitofusins possess four structural domains, including a GTPase domain, two extended helical bundles (HB1 and HB2), and a transmembrane region. We have characterized four Charcot-Marie-Tooth type 2A-associated variants with amino acid substitutions in Mfn2 that are proximal to the hinge that connects HB1 and HB2. A functional defect was not apparent in cells as the mitochondrial morphology of Mfn2-null cells was restored by expression of any of these variants. However, a significant fusion deficiency was observed in vitro, which was improved by the addition of crude cytosol extract or soluble Bax. All four variants had reduced nucleotide-dependent assembly in cis, but not trans, and this was also improved by the addition of Bax. Together, our data demonstrate an important role for this region in Mfn2 GTP-dependent oligomerization and membrane fusion and is consistent with a model where cytosolic factors such as Bax are masking molecular defects associated with Mfn2 disease variants in cells.


Asunto(s)
GTP Fosfohidrolasas/genética , Fusión de Membrana/genética , Proteínas Mitocondriales/genética , Proteína X Asociada a bcl-2/metabolismo , Sustitución de Aminoácidos/genética , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Mutación/genética , Nucleótidos/metabolismo , Fenotipo , Dominios Proteicos/genética , Proteína X Asociada a bcl-2/genética
6.
Methods Cell Biol ; 155: 491-518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183974

RESUMEN

Mitochondria are required for cell survival and are best known for their role in energy production. These organelles also participate in many other biological processes that are critical for cellular function, and thus, play a central role in cellular life and death decisions. In a majority of cell types, mitochondria form highly dynamic, reticular networks. Maintaining the shape of these complex, ever-changing networks is critical for mitochondrial and cellular function, and requires the conserved activities of mitochondrial fission and fusion. Great advances in our knowledge about the molecular machines that mediate these dynamic activities have been made over the past 2 decades. These advances have been driven by the use of highly complementary in vitro and in vivo approaches that have proven extremely powerful for studying the complex membrane remodeling processes that drive fission and fusion of the organelle. In this chapter, we detail current methods used to examine the mechanisms and regulation of mitochondrial fission and fusion in vitro and in vivo.


Asunto(s)
Bioensayo/métodos , Dinámicas Mitocondriales , Animales , Cromatografía de Afinidad , Dinaminas/aislamiento & purificación , Dinaminas/metabolismo , Dinaminas/ultraestructura , Fluorescencia , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Liposomas , Ratones , Mitocondrias/metabolismo , Fotoblanqueo
7.
J Biol Chem ; 294(20): 8001-8014, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30936207

RESUMEN

Mitofusins (Mfns) are dynamin-related GTPases that mediate mitochondrial outer-membrane fusion, a process that is required for mitochondrial and cellular health. In Mfn1 and Mfn2 paralogs, a conserved phenylalanine (Phe-202 (Mfn1) and Phe-223 (Mfn2)) located in the GTPase domain on a conserved ß strand is part of an aromatic network in the core of this domain. To gain insight into the poorly understood mechanism of Mfn-mediated membrane fusion, here we characterize a Mitofusin mutant variant etiologically linked to Charcot-Marie-Tooth syndrome. From analysis of mitochondrial structure in cells and mitochondrial fusion in vitro, we found that conversion of Phe-202 to leucine in either Mfn1 or Mfn2 diminishes the fusion activity of heterotypic complexes with both Mfn1 and Mfn2 and abolishes fusion activity of homotypic complexes. Using coimmunoprecipitation and native gel analysis, we further dissect the steps of mitochondrial fusion and demonstrate that the mutant variant has normal tethering activity but impaired higher-order nucleotide-dependent assembly. The defective coupling of tethering to membrane fusion observed here suggests that nucleotide-dependent self-assembly of Mitofusin is required after tethering to promote membrane fusion.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Animales , Línea Celular , GTP Fosfohidrolasas/genética , Ratones , Mitocondrias/genética , Dominios Proteicos
8.
Hum Mol Genet ; 27(21): 3710-3719, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085106

RESUMEN

Mitochondrial dynamics, including mitochondrial division, fusion and transport, are integral parts of mitochondrial and cellular function. DNM1L encodes dynamin-related protein 1 (Drp1), a member of the dynamin-related protein family that is required for mitochondrial division. Several de novo mutations in DNM1L are associated with a range of disease states. Here we report the identification of five patients with pathogenic or likely pathogenic variants of DNM1L, including two novel variants. Interestingly, all of the positions identified in these Drp1 variants are fully conserved among all members of the dynamin-related protein family that are involved in membrane division and organelle division events. This work builds upon and expands the clinical spectrum associated with Drp1 variants in patients and their impact on mitochondrial division in model cells.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas Asociadas a Microtúbulos/genética , Enfermedades Mitocondriales/enzimología , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Mutación , Línea Celular , Niño , Análisis Mutacional de ADN , Dinaminas , Femenino , GTP Fosfohidrolasas/fisiología , Humanos , Lactante , Masculino , Proteínas Asociadas a Microtúbulos/fisiología , Enfermedades Mitocondriales/fisiopatología , Proteínas Mitocondriales/fisiología
9.
J Immunol ; 201(6): 1627-1632, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068595

RESUMEN

Recent thymic emigrants (RTEs) are peripheral T cells that have most recently completed selection and thymic egress and constitute a population that is phenotypically and functionally distinct from its more mature counterpart. Ag-activated RTEs are less potent effectors than are activated mature T cells, due in part to reduced aerobic glycolysis (correctable by exogenous IL-2), which in turn impacts IFN-γ production. Mitochondria serve as nodal regulators of cell function, but their contribution to the unique biology of RTEs is unknown. In this study, we show that activated mouse RTEs have impaired oxidative phosphorylation, even in the presence of exogenous IL-2. This altered respiratory phenotype is the result of decreased CD28 signaling, reduced glutaminase induction, and diminished mitochondrial mass in RTEs relative to mature T cells. These results suggest an uncoupling whereby IL-2 tunes the rate of RTE glycolytic metabolism, whereas the unique profile of RTE mitochondrial metabolism is "hard wired."


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Glucólisis/inmunología , Activación de Linfocitos , Mitocondrias/inmunología , Timo/inmunología , Animales , Antígenos CD28/genética , Antígenos CD28/inmunología , Linfocitos T CD8-positivos/citología , Movimiento Celular/genética , Glucólisis/genética , Interleucina-2/genética , Interleucina-2/inmunología , Ratones , Ratones Noqueados , Mitocondrias/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Timo/citología
10.
J Cell Biol ; 204(7): 1083-6, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24687277

RESUMEN

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60.


Asunto(s)
Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Subunidades de Proteína/química , Animales , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Terminología como Asunto
11.
Curr Opin Cell Biol ; 29: 46-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24747170

RESUMEN

The structure of mitochondria is highly dynamic. Mitochondrial shape is cell-type specific and can be modified to meet changing requirements in energy production, calcium homeostasis, lipid biogenesis, fatty acid synthesis and other mitochondrial activities. This is achieved by modulating the dynamic properties of mitochondria including fusion, division, movement and positional tethering. It has become increasingly evident that mitochondrial dynamics also play an intimate role in several cellular signaling pathways and as such, many mechanisms have evolved to modulate mitochondrial structure. These regulatory mechanisms turn out to be important for modulation of mitochondrial-specific processes as well as cell, tissue and organism responses to developmental or environmental cues.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Linaje de la Célula , Humanos , Transducción de Señal , Estrés Fisiológico
13.
J Cell Biol ; 195(2): 323-40, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21987634

RESUMEN

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.


Asunto(s)
Epistasis Genética , Mitocondrias/genética , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Mitocondrias/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Levaduras/citología
14.
Mol Cell ; 41(2): 150-60, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255726

RESUMEN

In mammals, fusion of the mitochondrial outer membrane is controlled by two DRPs, MFN1 and MFN2, that function in place of a single outer membrane DRP, Fzo1 in yeast. We addressed the significance of two mammalian outer membrane fusion DRPs using an in vitro mammalian mitochondrial fusion assay. We demonstrate that heterotypic MFN1-MFN2 trans complexes possess greater efficacy in fusion as compared to homotypic MFN1 or MFN2 complexes. In addition, we show that the soluble form of the proapoptotic Bcl2 protein, Bax, positively regulates mitochondrial fusion exclusively through homotypic MFN2 trans complexes. Together, these data demonstrate functional and regulatory distinctions between MFN1 and MFN2 and provide insight into their unique physiological roles.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteína X Asociada a bcl-2/fisiología , Animales , Células Cultivadas , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Solubilidad , Proteína X Asociada a bcl-2/química
15.
J Cell Biol ; 186(6): 793-803, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19752025

RESUMEN

Two dynamin-related protein (DRP) families are essential for fusion of the outer and inner mitochondrial membranes, Fzo1 (yeast)/Mfn1/Mfn2 (mammals) and Mgm1 (yeast)/Opa1 (mammals), respectively. Fzo1/Mfns possess two medial transmembrane domains, which place their critical GTPase and coiled-coil domains in the cytosol. In contrast, Mgm1/Opa1 are present in cells as long (l) isoforms that are anchored via the N terminus to the inner membrane, and short (s) isoforms were predicted to be soluble in the intermembrane space. We addressed the roles of Mgm1 isoforms and how DRPs function in membrane fusion. Our analysis indicates that in the absence of a membrane, l- and s-Mgm1 both exist as inactive GTPase monomers, but that together in trans they form a functional dimer in a cardiolipin-dependent manner that is the building block for higher-order assemblies.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Liposomas , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Mutación , Conformación Proteica , Isoformas de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
16.
J Cell Biol ; 184(4): 569-81, 2009 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-19237599

RESUMEN

In yeast, three proteins are essential for mitochondrial fusion. Fzo1 and Mgm1 are conserved guanosine triphosphatases that reside in the outer and inner membranes, respectively. At each membrane, these conserved proteins are required for the distinct steps of membrane tethering and lipid mixing. The third essential component is Ugo1, an outer membrane protein in the mitochondrial transport protein family. We show that Ugo1 is a modified member of this family, containing three transmembrane domains and existing as a dimer, a structure that is critical for the fusion function of Ugo1. Our functional analysis of Ugo1 indicates that it is required distinctly for both outer and inner membrane fusion after membrane tethering, indicating that it operates at the lipid-mixing step of fusion. This role is distinct from the fusion dynamin-related proteins and thus demonstrates that at each membrane, a single fusion protein is not sufficient to drive the lipid-mixing step, but instead, this step requires a more complex assembly of proteins.


Asunto(s)
Fusión de Membrana , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochim Biophys Acta ; 1793(1): 20-6, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18691613

RESUMEN

This review is focused on mitochondrial membrane fusion, which is a highly conserved process from yeast to human cells. We present observations from both yeast and mammalian cells that have provided insights into the mechanism of mitochondrial fusion and speculate on how the key players, which are dynamin-related GTPases do the work of membrane tethering and fusion.


Asunto(s)
Fusión de Membrana/fisiología , Membranas Mitocondriales/metabolismo , Animales , Dinaminas/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Ubiquitinación/fisiología
18.
Genetics ; 177(1): 137-49, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17660559

RESUMEN

Tob55 is the major component of the TOB complex, which is found in the outer membrane of mitochondria. A sheltered knockout of the tob55 gene was developed in Neurospora crassa. When grown under conditions that reduce the levels of the Tob55 protein, the strain exhibited a reduced growth rate and mitochondria isolated from these cells were deficient in their ability to import beta-barrel proteins. Surprisingly, Western blots of wild-type mitochondrial proteins revealed two bands for Tob55 that differed by approximately 4 kDa in their apparent molecular masses. Sequence analysis of cDNAs revealed that the tob55 mRNA is alternatively spliced and encodes three isoforms of the protein, which are predicted to contain 521, 516, or 483 amino acid residues. Mass spectrometry of proteins isolated from purified outer membrane vesicles confirmed the existence of each isoform in mitochondria. Strains that expressed each isoform of the protein individually were constructed. When cells expressing only the longest form of the protein were grown at elevated temperature, their growth rate was reduced and mitochondria isolated from these cells were deficient in their ability to assembly beta-barrel proteins.


Asunto(s)
Empalme Alternativo , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Neurospora crassa/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Espectrometría de Masas , Proteínas de Transporte de Membrana Mitocondrial/genética , Datos de Secuencia Molecular , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/metabolismo , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Transformación Genética
20.
J Biol Chem ; 279(13): 12396-405, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14722057

RESUMEN

The Tim8 and Tim13 proteins in yeast are known to exist in the mitochondrial intermembrane space and to form a hetero-oligomeric complex involved in the import of the mitochondrial inner membrane protein Tim23, the central component of the TIM23 translocase. Here, we have isolated tim8 and tim13 mutants in Neurospora crassa and have shown that mitochondria lacking the Tim8-Tim13 complex were deficient in the import of the outer membrane beta-barrel proteins Tom40 and porin. Cross-linking studies showed that the Tom40 precursor contacts the Tim8-Tim13 complex. The complex is involved at an early point in the Tom40 assembly pathway because cross-links can only be detected during the initial stages of Tom40 import. In mitochondria lacking the Tim8-Tim13 complex, the Tom40 precursor appears in a previously characterized early intermediate of Tom40 assembly more slowly than in wild type mitochondria. Thus, our data suggest a model in which one of the first steps in Tom40 assembly may be interaction with the Tim8-Tim13 complex. As in yeast, the N. crassa Tim23 precursor was imported inefficiently into mitochondria lacking the Tim8-Tim13 complex when the membrane potential was reduced. Tim23 import intermediates could also be cross-linked to the complex, suggesting a dual role for the Tim8-Tim13 intermembrane space complex in the import of proteins found in both the outer and inner mitochondrial membranes.


Asunto(s)
Proteínas Portadoras/fisiología , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/fisiología , Neurospora crassa/metabolismo , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/farmacología , Electroforesis en Gel de Poliacrilamida , Membranas Intracelulares/metabolismo , Potenciales de la Membrana , Proteínas de Transporte de Membrana/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Mutación Puntual , Porinas/química , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...