Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 165: 107436, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690289

RESUMEN

Elizabethkingia anophelis is a human pathogen responsible for severe nosocomial infections in neonates and immunocompromised patients. The significantly higher mortality rate from E. anophelis infections and the lack of available regimens highlight the critical need to explore novel drug targets. The current study investigated effective novel drug targets by employing a comprehensive in silico subtractive genomic approach integrated with pangenomic analysis of E. anophelis strains. A total of 2809 core genomic proteins were found by pangenomic analysis of non-paralogous proteins. Subsequently, 156 pathogen-specific, 442 choke point, 202 virulence factor, 53 antibiotic resistant and 119 host-pathogen interacting proteins were identified in E. anophelis. By subtractive genomic approach, at first 791 proteins were found to be indispensable for the survival of E. anophelis. 558 and 315 proteins were detected as non-homologous to human and gut microflora respectively. Following that 245 cytoplasmic, 245 novel, and 23 broad-spectrum targets were selected and finally four proteins were considered as potential therapeutic targets of E. anophelis based on highest degree score in PPI network. Among those, three proteins were subjected to molecular docking and subsequent MD simulation as one protein did not contain a plausible binding pocket with sufficient surface area and volume. All the complexes were found to be stable and compact in 100 ns molecular dynamics simulation studies as measured by RMSD, RMSF, and Rg. These three short-listed targets identified in this study may lead to the development of novel antimicrobials capable of curing infections and pave the way to prevent and control the disease progression caused by the deadly agent E. anophelis.


Asunto(s)
Antibacterianos , Genómica , Recién Nacido , Humanos , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Simulación de Dinámica Molecular
2.
PLoS One ; 18(5): e0273592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163561

RESUMEN

Apyrase (APY) is a nucleoside triphosphate (NTP) diphosphohydrolase (NTPDase) which is a member of the superfamily of guanosine diphosphatase 1 (GDA1)-cluster of differentiation 39 (CD39) nucleoside phosphatase. Under various circumstances like stress, cell growth, the extracellular adenosine triphosphate (eATP) level increases, causing a detrimental influence on cells such as cell growth retardation, ROS production, NO burst, and apoptosis. Apyrase hydrolyses eATP accumulated in the extracellular membrane during stress, wounds, into adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and regulates the stress-responsive pathway in plants. This study was designed for the identification, characterization, and for analysis of APY gene expression in Oryza sativa. This investigation discovered nine APYs in rice, including both endo- and ecto-apyrase. According to duplication event analysis, in the evolution of OsAPYs, a significant role is performed by segmental duplication. Their role in stress control, hormonal responsiveness, and the development of cells is supported by the corresponding cis-elements present in their promoter regions. According to expression profiling by RNA-seq data, the genes were expressed in various tissues. Upon exposure to a variety of biotic as well as abiotic stimuli, including anoxia, drought, submergence, alkali, heat, dehydration, salt, and cold, they showed a differential expression pattern. The expression analysis from the RT-qPCR data also showed expression under various abiotic stress conditions, comprising cold, salinity, cadmium, drought, submergence, and especially heat stress. This finding will pave the way for future in-vivo analysis, unveil the molecular mechanisms of APY genes in stress response, and contribute to the development of stress-tolerant rice varieties.


Asunto(s)
Oryza , Oryza/metabolismo , Apirasa/genética , Apirasa/metabolismo , Nucleósidos , Adenosina Monofosfato , Adenosina Trifosfato/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
3.
Comput Biol Chem ; 101: 107784, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375370

RESUMEN

The magnitude of human affliction brought about by bacterial infections has been on the rise since the mid-5th century. Yersinia pestis is one such notable, gram-negative bacterium that inflicted havoc around the globe three times throughout different millenniums by causing deadly plagues. Despite the unremitting efforts by scientists, different strains of Yersinia pestis are still affecting the populations in various parts of the world by growing resistant to existing antimicrobial agents owing to their overuse. The current scenario, therefore, calls for new therapeutics to further combat the disease. In this study, 3105 core, 387 pathogen-specific unique, 536 choke-point, 796 virulence factors, and 115 antimicrobial resistant proteins were found using a pan-genomic and subtractive genome analysis of nine Yersinia pestis strains that could be instrumental in the development of drugs against Yersinia pestis. Subsequently, 1461 and 1114 essential proteins were identified as non-homologous to human and gut microflora. 535 and 30 proteins were predicted as cytoplasmic and broad-spectrum targets respectively. Finally, four potential targets were selected for their high connectivity in protein-protein interaction network. These selected target proteins are associated with one of the major lipopolysaccharide biosynthesis pathways. Therefore, dismantling their activity might indicate a probable strategy for developing therapeutics to combat bacterial infection caused by Yersinia pestis. However, further experimental validation in the laboratory is needed to consolidate the research findings.


Asunto(s)
Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Peste/tratamiento farmacológico , Peste/genética , Peste/microbiología , Genómica , Genoma Bacteriano , Factores de Virulencia
4.
Gene ; 835: 146664, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35691406

RESUMEN

The heavy-metal-associated (HMA) family plays a major role in the transportation of metals. Despite having the genome sequence of the tomato (Solanum lycopersicum), the HMA gene family has not been studied yet. In this study, we identified 48 HMA genes and categorized them into Cu/Ag P1B-ATPase and Zn/Co/Cd/Pb P1BATPase sub-families according to their phylogenic relationship with Arabidopsis and rice. The SlHMA genes were distributed throughout the 12 chromosomes. Analysis of gene structure, chromosomal position, and synteny, revealed that segmental duplications bestowed their evolution. The high numbers of stress-related cis-elements were found to be present in the putative promoter regions indicate the involvement of SlHMAs in stress modulation pathways. RNA-seq data revealed that SlHMAs had divergent expression in different tissues and developmental stages, where members of Cu/Ag P1B-ATPase subfamily were strongly expressed in the roots. RT-qPCR analysis of nine selected SlHMAs showed that most of the genes were up-regulated in response to heavy metals and moderately regulated in response to different abiotic stresses such as salt, drought, and cold.


Asunto(s)
Arabidopsis , Metales Pesados , Solanum lycopersicum , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
5.
Biotechnol Rep (Amst) ; 35: e00740, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35646621

RESUMEN

It is essential to develop high salt-tolerant rice varieties in order to cultivate the salt-affected lands. In this study, Na+/H+ exchanger 1 (NHX1) gene isolated from Vigna radiata L. Wilczek was transferred in Bangladesh Rice Research Institute (BRRI) developed two indica rice genotypes BRRI Dhan28 and BRRI Dhan29 using in-planta approach for improvement of salinity tolerance. Embryonic axes of matured dehusked rice seeds were injured and co-cultivated with Agrobacterium strain harboring VrNHX1 gene and finally regenerated. GUS histochemical assay and PCR amplification of GUS-a and VrNHX1 were performed to confirm the transformation. Expression confirmation was done by semi-quantitative RT-PCR. Under salinity stress, transgenic lines showed higher chlorophyll, relative water content and decreased electrolyte leakage, proline content, lipid peroxidation level, and catalase enzyme activity which represent the better physiology than control plants. Moreover, under salinity stress (150 mM), transgenic lines exhibited superior growth and salt tolerant than non-transgenic plants.

6.
J Biomol Struct Dyn ; 40(16): 7256-7273, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682629

RESUMEN

Retinoblastoma 1 (RB1) is the first discovered tumor suppressor gene and recognized as the simple model system whose encoded defective protein can cause a pediatric cancer retinoblastoma. It functions as a negative regulator of the cell cycle through the interactions with members of the E2F transcription factors family. The protein of the RB1 gene (pRB) is engaged in various cell cycle processes including apoptosis, cell cycle arrest and chromatin remodeling. Recent studies on Retinoblastoma also exhibited multiple sets of point mutation in the associated protein due to its large polymorphic information in the local database. In this study, we identified the list of disease associated non-synonymous single nucleotide polymorphisms (nsSNPs) in RB1 by incorporating different computational algorithms, web servers, modeling of the mutants and finally superimposing it. Out of 826 nsSNPs, W516G and W563G were predicted to be highly deleterious variants in the conserved regions and found to have an impact on protein structure and protein-protein interaction. Moreover, our study concludes the effect of W516G variant was more detrimental in destabilizing protein's nature as compared to W563G variant. We also found defective binding of pRB having W516G mutation with E2F2 protein. Findings of this study will aid in shortening of the expensive experimental cost of identifying disease associated SNPs in retinoblastoma for which specialized personalized treatment or therapy can be formulated.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Ciclo Celular , Niño , Factores de Transcripción E2F/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Proteínas , Retinoblastoma/genética
7.
PLoS One ; 16(11): e0259691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34735543

RESUMEN

Cycline-dependent kinase 4 (CDK4), an enzyme of the cycline dependent or Ser/Thr protein kinase family, plays a role in cell cycle progression (G1 phase) by phosphorylating a tumor suppressor protein called pRB. Alteration of this enzyme due to missense mutation/ nonsynonymous single nucleotide polymorphisms (nsSNPs) are responsible for various types of cancer progression, e.g. melanoma, lung cancer, and breast cancer. Hence, this study is designed to identify the malignant missense mutation of CDK4 from the single nucleotide polymorphism database (dbSNP) by incorporating computational algorithms. Out of 239 nsSNPs; G15S, D140Y and D140H were predicted to be highly malignant variants which may have a devastating impact on protein structure or function. We also found defective binding motif of these three mutants with the CDK4 inhibitor ribociclib and ATP. However, by incorporating molecular dynamic simulation, our study concludes that the superiority of G15S than the other two mutants (D140Y and D140H) in destabilizing proteins nature.


Asunto(s)
Biología Computacional/métodos , Quinasas Ciclina-Dependientes/metabolismo , Polimorfismo de Nucleótido Simple/genética , Adenosina Trifosfato/farmacología , Aminopiridinas/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Simulación de Dinámica Molecular , Mutación/genética , Purinas/farmacología
8.
J Genet Eng Biotechnol ; 19(1): 167, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34704216

RESUMEN

BACKGROUND: Nitrogen and potassium are crucial supplements for plant development and growth. Plants can detect potassium and nitrate ions in soils and in like way, they modify root-to-shoot transport of these ions to adjust the conveyance among roots and shoots. Transcription factor MYB59 plays essential roles in numerous physiological processes inclusive of hormone response, abiotic stress tolerance, plant development, and metabolic regulation. In this study, we retrieved 56 MYB59 proteins from different plant species. Multiple sequence alignment, phylogenetic tree, conserved motif, chromosomal localization, and cis-regulatory elements of the retrieved sequences were analyzed. Gene structure, protein 3D structure, and DNA binding of OsMYB59 indica were also predicted. Finally, we characterized OsMYB59 and its function under low K+/NO3- conditions in Oryza sativa subsp. indica. RESULTS: Data analysis showed that MYB59s from various groups separated in terms of conserved functional domains and gene structure, where members of genus Oryza clustered together. Plants showed reduced height and yellowish appearance when grown on K+ and NO3- deficient medium. Quantitative real-time PCR uncovered that the OsMYB59 reacted to abiotic stresses where its expression was increased in BRRI dhan56 but decreased in other varieties on K+ deficient medium. In addition, OsMYB59 transcript level increased on NO3- deficient medium. CONCLUSIONS: Our results can help to explain the biological functions of indica rice MYB59 protein and gave a theoretical premise to additionally describe its biological roles in response to abiotic stresses particularly drought.

9.
Heliyon ; 7(3): e06396, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33732931

RESUMEN

Being a Positive sense RNA virus the recent reemergence of Chikungunya and Mayaro virus has taken the concern of the leading scientific communities of the world. Though the outbreak of Mayaro virus is limited to Neotropical region only, Chikungunya is already identified in over 60 countries around the world. Besides, the lack of a strong protective treatment, misdiagnosis issue and co-circulation of both the viruses calls for a new strategy which could potentially prevent these infections from spreading. In this study, we therefore, identified the peptide based vaccine candidates e.g. epitopes for B cell and T cell from Chikungunya virus which also showed to be homologous to the Mayaro virus through immuno-informatics and computational approaches. Final epitopes identified from the most antigenic structural polyprotein of both the viruses were 5 for CD8+ T cell Epitopes (209KPGDSGRPI217, 219TGTMGHFIL227, 239ALSVVTWNK247, 98KPGRRERMC106 and 100GRRERMCMK108), 2 epitopes for CD4+ T cell (105MCMKIENDCIFEVKH119 and 502DRTLLSQQSGNVKIT516) and a single epitope for B cell (504GGRFTIPTGAGKPGDSGRPI518). Analysis of our predicted epitopes for population coverage showed prominent population coverage (92.43%) around the world. Finally, molecular docking simulation of the foreseen T cell epitopes with respondent HLA alleles secured good HLA-epitope interaction. This study was directed towards the discovery of potential antigenic epitopes which can open up a new skyline to design novel vaccines for combating both of the diseases at the same time.

10.
Heliyon ; 6(8): e04333, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32923704

RESUMEN

Random Amplified Polymorphic DNA (RAPD) analysis was performed to assess the genetic variability in sixteen selected germplasms of rice, Oryza sativa L. using eight decamer RAPD primers. The data obtained from this investigation reveals a high level of polymorphism between cultivars. The primers produced a total of 255 bands of which all 255 bands were polymorphic indicating 100% polymorphism. The size of the amplified bands ranged from 220 bp to 2290 bp. The number of polymorphic fragments ranged from 24 to 49 with an average of 32 polymorphic fragments for each primer. The primer OPX04 produced the maximum number (49) of polymorphic bands while the OPB04 and OPB17 produced the minimum number (24) of polymorphic bands. The polymorphic information content (PIC) values ranged from 0.6616 to 0.8845 with an average of 0.832. The highest PIC value (0.8845) was obtained for primer OPL03. The RAPD data was analyzed to determine the pair-wise genetic similarity coefficients which ranged from 0.00 to 0.83. The BRRIdhan 23 and the BRRIdhan 41 varieties were the closest genotypes with the highest similarity index of 83%. This was followed by 77% similarity between a pair of cultivars Kalamona and Horkuch. On the other hand, 100% dissimilarity was seen between BRRIdhan 53, BRRIdhan 50, BRRIdhan 10, BRRIdhan 70, BRRIdhan 54, BRRIdhan 40, BRRIdhan 23, BRRIdhan 47, BRRIdhan 41 and Dadsail respectively and between BRRIdhan 53 and Horkuch; indicating a high level of variability between paired genotypes. Cluster analysis was performed using Unweighted Paired Group of Arithmetic Means (UPGMA). The UPGMA dendrogram resolved the selected rice cultivars into four clusters.

11.
J Genet Eng Biotechnol ; 17(1): 14, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31840208

RESUMEN

BACKGROUND: Recent studies indicate that farmers are facing several challenges due to biotic and abiotic stresses like diseases, drought, cold, and soil salinity which are causing declined Citrus production. Thus, it is essential to improve these varieties which would be resistant against biotic and abiotic stresses as well as high yielding. The transformation of abiotic stress tolerant genes in Citrus species is essential for using areas affected by abiotic stresses. This study was aimed to improve resistance of Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck to abiotic stresses by transferring PsCBL and PsCIPK genes through Agrobacterium-mediated transformation. RESULTS: Abiotic stress tolerant PsCBL and PsCIPK genes isolated from Pisum sativum were transformed into two Citrus species, Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck, through Agrobacterium-mediated transformation method. Mature seed-derived calli of two Species were infected with Agrobacterium tumefaciens LBA4404 harboring PsCBL and PsCIPK genes. The infected calli were co-cultured in dark condition and later on washed with antibiotic solution and transferred to selection medium. Preliminary resistant calli were recovered and regenerated to plantlets. Maximum regeneration rate was 61.11 ± 1.35% and 55.55 ± 1.03%, respectively. The genetic transformation was confirmed by performing ß glucuronidase (GUS) assays and subsequent PCR amplification of the GUS gene. The transformation rates of the two cultivated species were higher than previous reports. Maximum transformation frequencies were found when bacterial OD600 was 0.5 and concentration of acetosyringone was 150 µM. In-vitro evaluation of drought and salt tolerance of transgenic plantlets were done, and transgenic plantlets showed better performance than the control plants. CONCLUSIONS: The present study demonstrates that transformation of Citrus plants with PsCBL and PsCIPK genes result in improved abiotic stress tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...