Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3421, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233040

RESUMEN

This paper presents an extension of the non-field analytical method-known as the method of Kulish-to model gas dissolution into a liquid due to forced compression. Solutions are obtained for the time evolution of pressure (and, hence, mass concentration) at the gas-liquid interface. These solutions are in the form of series with respect to fractional differ-integral operators. The asymptotic solutions for the two limiting cases of compression-slow and fast compression-have been established as well. Then several particular examples of the law of gas volume variation are considered. Among them, the law of a linear volume variation is the most interesting for practical purposes, in which case numerical values of the dimensionless pressure as a function of dimensionless time are provided.

2.
Sci Rep ; 11(1): 18968, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556778

RESUMEN

This paper presents an extension of the non-field analytical method-known as the method of Kulish-to solving heat transfer problems in domains with a moving boundary. This is an important type of problems with various applications in different areas of science. Among these are heat transfer due to chemical reactions, ignition and explosions, combustion, and many others. The general form of the non-field solution has been obtained for the case of an arbitrarily moving boundary. After that some particular cases of the solution are considered. Among them are such cases as the boundary speed changing linearly, parabolically, exponentially, and polynomially. Whenever possible, the solutions thus obtained have been compared with known solutions. The final part of the paper is devoted to determination of the front propagation law in Stefan-type problems at large times. Asymptotic solutions have been found for several important cases of the front propagation.

3.
Int J Endocrinol ; 2015: 545068, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074960

RESUMEN

The study aimed at assessing the potential use of lower total and HMW adiponectin levels for predicting cardiovascular risk in patients with type 2 diabetes mellitus (T2DM). Concentrations of total adiponectin or high molecular weight (HMW) adiponectin decrease in association with the development of metabolic dysfunction such as obesity, insulin resistance, or T2DM. Increased adiponectin levels are associated with a lower risk for coronary heart disease. A total of 551 individuals were assessed. The first group comprised metabolically healthy participants (143 females, and 126 males) and the second group were T2DM patients (164 females, and 118 males). Both total adiponectin and HMW adiponectin in diabetic patients were significantly lower when compared with the group of metabolically healthy individuals. There was a weak monotonic correlation between HMW adiponectin levels and triglycerides levels. Binary logistic regression analysis, gender adjusted, showed a higher cardiovascular risk in diabetic persons when both total adiponectin (OR = 1.700) and HMW adiponectin (OR = 2.785) levels were decreased. A decrease in total adiponectin levels as well as a decrease in its HMW adiponectin is associated with a higher cardiovascular risk in individuals with T2DM. This association suggests that adiponectin levels may be potentially used as an epidemiological marker for cardiovascular risk in diabetic patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...