Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Dairy Sci ; 106(2): 1051-1064, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494227

RESUMEN

The objective of this study was to investigate the effect of increasing stocking rate (SR) and extending grazing season (GS) length on pasture and animal productivity on a marginal, poorly draining soil type. The study was a multiyear (2017 to 2020, inclusive) whole farm systems evaluation with a 2 × 2 factorial experimental arrangement of treatments. The systems evaluated comprised 2 GS lengths, average (AGS; 205 d) and extended (EGS; 270 d), and the 2 whole farm stocking rates were medium (2.5 cows/ha) and high (2.9 cows/ha). We used this study design to create 4 grazing system intensities (500, 600, 700, and 800 cow grazing days per hectare per year). In 2017, cows were randomly allocated to 1 of the 4 whole farm systems precalving and remained on the same treatments for the duration of the study. We found no significant differences in total average annual pasture production [14,133 ± 538 kg of dry matter (DM) per hectare] or sward chemical composition between GS and SR treatments over the 4-yr period, with the exception of average crude protein content, which was lower for EGS (211 g/kg DM) compared with AGS (218 g/kg DM). Grazed pasture production was significantly increased in EGS treatments (+758 kg of DM/ha) compared with AGS (9,917 kg of DM/ha), whereas conserved silage DM production was greater for AGS (+716 kg of DM/ha) compared with EGS (3,583 kg of DM/ha). Neither GS nor SR had a significant effect on daily or cumulative lactation milk and fat plus protein production per cow (5,039 and ±440 kg, respectively). Increasing SR resulted in increased milk fat plus protein yield per hectare based on increased grazed pasture utilization. These results add further credence to the important additive contributions of both extended grazing and SR intensification to achieve high levels of grazed pasture utilization and milk production per hectare while reducing supplementary feed requirements within spring-calving grazing systems.


Asunto(s)
Alimentación Animal , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Estaciones del Año , Industria Lechera/métodos , Lactancia , Proteínas de la Leche/metabolismo , Dieta/veterinaria
2.
J Dairy Sci ; 106(3): 1837-1852, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567246

RESUMEN

The objective of this research was to evaluate how different feeding strategies based on various pasture availability (PA) treatments within intensive seasonal production systems affected pasture production and utilization, sward quality, and the milk production, body weight (BW), and body condition score (BCS) of dairy cows. The performance data were obtained from a 3-yr experiment conducted previously (2018-2020, inclusive). In total, records from 208 spring-calving dairy cows were available for analysis. The animals were randomly allocated to 1 of 3 PA grazing treatments in spring that varied in average pasture cover (measured as herbage mass available above 3.5 cm) that was established via different pasture management strategies in the previous autumn. Thus, the opening average pasture cover across all paddocks on February 1 was 1,100 kg of dry matter (DM)/ha for high pasture availability (HPA), 880 for medium pasture availability (MPA), and 650 for low pasture availability (LPA), respectively. The measurements were taken over an 8-wk period during the first grazing rotation in spring, commencing on February 16 (±2 d) and finishing when all paddocks were grazed once on April 12 (±5 d). Paddocks that were part of the HPA treatment showed the highest pregrazing herbage masses and pregrazing sward heights (1,645 kg of DM/ha and 8.2 cm, respectively) compared with MPA (1,412 kg of DM/ha and 7.5 cm, respectively) and LPA (1,170 kg of DM/ha and 6.9 cm, respectively). Owing to the differences in PA, daily herbage allowance was greatest for HPA (11.7 kg of DM/cow), intermediate for MPA (10.2 kg of DM/cow), and lowest for LPA (8.8 kg of DM/cow), with the remaining feed deficit composed of additional daily grass silage supplementation (0.8, 1.5, and 2.8 kg of DM/cow for HPA, MPA, and LPA, respectively), while the daily concentrate and daily total feed allowance were equal between treatments during spring (2.7 and 15.0 kg of DM/cow). Despite salient differences in fresh pasture used, complementing pasture intake with grass silage did not affect daily or cumulative milk, solids-corrected milk, fat, or protein yield or milk constituents. Similarly, BW and BCS were also unaffected by PA treatment. The results highlight the importance of high spring pasture utilization and grazing efficiency achievable with higher pregrazing herbage masses, which also allow larger animal intakes from grazed pasture as the cheapest feed source during spring. Moreover, targeting an adequate pasture supply at the commencement of calving increases the grazing days per hectare and lowers the requirement for supplementary feed on farm, particularly when facing increasing variability in climatic conditions.


Asunto(s)
Dieta , Lactancia , Bovinos , Femenino , Animales , Estaciones del Año , Dieta/veterinaria , Industria Lechera/métodos , Leche/metabolismo , Poaceae , Peso Corporal , Alimentación Animal/análisis
3.
J Dairy Sci ; 106(2): 1097-1109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526459

RESUMEN

Selection for feed efficiency, the ratio of output (e.g., milk yield) to feed intake, has traditionally been limited on commercial dairy farms by the necessity for detailed individual animal intake and performance data within large animal populations. The objective of the experiment was to evaluate the effects of individual animal characteristics (animal breed, genetic potential, milk production, body weight (BW), daily total dry matter intake (TDMI), and energy balance) on a cost-effective production efficiency parameter calculated as the annual fat and protein (milk solids) production per unit of mid-lactation BW (MSperBWlact). A total of 1,788 individual animal intake records measured at various stages of lactation (early, mid, and late lactation) from 207 Holstein-Friesian and 200 Jersey × Holstein-Friesian cows were used. The derived efficiency traits included daily kilograms of milk solids produced per 100 kg of BW (dMSperBWint) and daily kilograms of milk solids produced per kilogram of TDMI (dMSperTDMI). The TDMI per 100 kg of BW was also calculated (TDMI/BWint) at each stage of lactation. Animals were subsequently either ranked as the top 25% (Heff) or bottom 25% (Leff) based on their lactation production efficiency (MSperBWlact). Dairy cow breed significantly affected animal characteristics over the entire lactation and during specific periods of intake measurements. Jersey crossbred animals produced more milk, based on a lower TDMI, and achieved an increased intake per kilogram of BW. Similarly, Heff produced more milk over longer lactations, weighed less, were older, and achieved a higher TDMI compared with the Leff animals. Both Jersey × Holstein-Friesian and Heff cows achieved superior production efficiency due to lower maintenance energy requirements, and consequentially increased milk solids production per kilogram of BW and per kilogram of TDMI at all stages of lactation. Indeed, within breed, Heff animals weighed 20 kg less and produced 15% more milk solids over the total lactation than Leff. In addition, Heff achieved increased daily milk solids yield (+0.16 kg) and milk solids yield per kilogram of TDMI (+ 0.23 kg/kg DM) during intake measurement periods. Moreover, the strong and consistently positive correlations between MSperBWlact and detailed production efficiency traits (dMSperBWint, dMSperTDMI) reported here demonstrate that MSperBWlact is a robust measure that can be applied within commercial grazing dairy systems to increase the selection intensity for highly efficient animals.


Asunto(s)
Alimentación Animal , Dieta , Femenino , Bovinos , Animales , Dieta/veterinaria , Industria Lechera , Lactancia/genética , Leche/metabolismo , Peso Corporal
4.
J Dairy Sci ; 104(6): 6803-6819, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33741168

RESUMEN

The objective of this study was to investigate the effect of altering autumn pasture availability and farm system intensity on the productivity of spring-calving dairy cows during autumn. A total of 144 Holstein-Friesian and Holstein-Friesian × Jersey crossbred dairy cows were randomly assigned to 2 whole farm system (FS) intensities and 3 autumn pasture availability (PA; measured above 3.5 cm) treatments in a 2 × 3 factorial arrangement. The 2 farm systems consisted of a medium intensity (MI: 2.75 cows/ha, target postgrazing sward height of 4.0-4.5 cm) and high intensity system (HI: 3.25 cows/ha, target postgrazing sward height of 3.5-4.0 cm, + 1.8 kg of concentrate dry matter [(DM)/cow per day]. Within each farm system treatment, cows were further subdivided into 3 different PA management strategies: high PA (HPA), medium PA (MPA), and low PA (LPA). The experimental period lasted for 11 wk from September 1 to housing of all animals on November 20 (±2 d) over 3 yr (2017-2019, inclusive). To establish the different average pasture covers for each PA treatment during autumn and in particular at the end of the grazing season, grazing rotation length was extended by +13 and +7 d for HPA and MPA, respectively, beyond that required by LPA (37 d). There were no significant FS × PA interactions for any of the pasture, dry matter intake, or milk production and composition variables analyzed. There were also no differences in pregrazing sward characteristics or sward nutritive value between FS with the exception of daily herbage allowance, which was reduced for HI system (12.2 vs. 14.2 kg of DM/cow). Milk and milk solid yield were greater for HI groups (15.9 and 1.55 kg/cow per day, respectively) compared with MI (15.4 and 1.50 kg/cow per day, respectively). Mean paddock pregrazing herbage mass was significantly higher with increased PA ranging from a mean of 1,297 kg of DM/ha for LPA to 1,718 and 2,111 kg of DM/ha of available pasture for MPA and HPA, respectively. Despite large differences in pregrazing herbage mass, there was no difference in cumulative pasture production and only modest differences in grazing efficiency and sward nutritive value between PA treatments. On average, closing pasture covers were 420, 650, and 870 kg of DM/ha for LPA, MPA, and HPA, respectively, on December 1. In addition to maintaining similar grazing season lengths and achieving big differences in availability of pasture on farm into late autumn, PA treatment had no significant effect on dry matter intake, milk production, and body condition score during the study period. The results of this study indicate that greater cow performance and pasture utilization can be achieved through a greater daily concentrate allocation along with an increased stocking rate. Moreover, the potential to adapt grazing management practices to increase the average autumn pasture cover in intensive grazing systems is highlighted. In addition, a high dependence on high-quality grazed pasture during late autumn can be ensured without compromising grazing season length while also allowing additional pasture to be available for the subsequent spring.


Asunto(s)
Industria Lechera , Lactancia , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Granjas , Femenino , Leche , Estaciones del Año
5.
JDS Commun ; 2(5): 257-261, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36338390

RESUMEN

The growing awareness and scrutiny of the management of young dairy calves, especially male calves, necessitates a support tool to aid in the planning of resource allocation on dairy farms. There is a desire among some vendors for a minimum calf weight when purchasing young dairy bull calves. Hence, the objective of the present study was to investigate whether live weight of young calves (approximately 10-50 d old) can be predicted using readily accessible animal-level features, especially features that may be available in advance of birth. A multiple linear regression mixed model was developed with the live weight of 602 dairy bull calves aged between 10 and 42 d as the dependent variable; the age at which an animal is predicted to reach a predefined live weight was then estimated based on the model regression coefficients. Fixed effects included in the multiple regression model were dam parity, gestation length, and parental average genetic merit for relevant traits available in Ireland; namely, birth weight, birth size, and carcass weight. Herd of origin was included as a random effect, with all calves having been sold directly from the farm of birth. Live weight data were recorded at the point of sale when calves were, on average, 26 d old with a mean live weight of 56.6 kg. Animals were randomly assigned to 10 separate (i.e., folds) cross-validation data sets without replacement (i.e., each fold consisted of a different 10% of the data to test the model, with the remaining 90% of data being used to train the model) to quantify the accuracy of prediction. Across all data, the correlation between actual and predicted live weight was 0.76; the regression coefficient of actual live weight on predicted live weight across all data was 0.99. The root mean squared error of prediction varied from 4.40 to 6.66 kg per fold. Across all data, the root mean squared error was 5.61 kg, implying that 68% of live weight predictions were within 5.61 kg of the actual live weight. Given the potential availability of all model features in advance of birth (gestation length can be predicted from ultrasound examination of the pregnant uterus, although substituting parental average genetic merit for gestation length had minimal effect on model performance), predictions can be integrated into a dairy farm decision support tool to aid in the management of labor and infrastructure resources to achieve minimum live weight specifications before sale.

6.
J Dairy Sci ; 102(3): 2560-2577, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30612799

RESUMEN

The objective of this study was to validate the effect of genetic improvement using the Irish genetic merit index, the Economic Breeding Index (EBI), on total lactation performance and lactation profiles for milk yield, milk solids yield (fat plus protein; kg), and milk fat, protein, and lactose content within 3 pasture-based feeding treatments (FT) and to investigate whether an interaction exists between genetic group (GG) of Holstein-Friesian and pasture-based FT. The 2 GG were (1) extremely high EBI representative of the top 5% nationally (referred to as the elite group) and (2) representative of the national average EBI (referred to as the NA group). Cows from each GG were randomly allocated each year to 1 of 3 pasture-based FT: control, lower grass allowance, and high concentrate. The effects of GG, FT, year, parity, and the interaction between GG and FT adjusted for calving day of year on milk and milk solids (fat plus protein; kg) production across lactation were studied using mixed models. Cow was nested within GG to account for repeated cow records across years. The overall and stage of lactation-specific responses to concentrate supplementation (high concentrate vs. control) and reduced pasture allowance (lower grass allowance vs. control) were tested. Profiles of daily milk yield, milk solids yield, and milk fat, protein, and lactose content for each week of lactation for the elite and NA groups within each FT and for each parity group within the elite and NA groups were generated. Phenotypic performance was regressed against individual cow genetic potential based on predicted transmitting ability. The NA cows produced the highest milk yield. Milk fat and protein content was higher for the elite group and consequently yield of solids-corrected milk was similar, whereas yield of milk solids tended to be higher for the elite group compared with the NA group. Milk lactose content did not differ between GG. Responses to concentrate supplementation or reduced pasture allowance did not differ between GG. Milk production profiles illustrated that elite cows maintained higher production but with lower persistency than NA cows. Regression of phenotypic performance against predicted transmitting ability illustrated that performance was broadly in line with expectation. The results illustrate that the superiority of high-EBI cattle is consistent across diverse pasture-based FT. The results also highlight the success of the EBI to deliver production performance in line with the national breeding objective: lower milk volume with higher fat and protein content.


Asunto(s)
Cruzamiento/economía , Bovinos/genética , Bovinos/fisiología , Industria Lechera/métodos , Lactancia/genética , Estaciones del Año , Animales , Bovinos/clasificación , Industria Lechera/economía , Dieta/veterinaria , Grasas/análisis , Femenino , Irlanda , Lactancia/fisiología , Lactosa/metabolismo , Leche/química , Proteínas de la Leche/análisis , Paridad , Poaceae , Embarazo
7.
Animal ; 12(s2): s350-s362, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30419980

RESUMEN

Although food from grazed animals is increasingly sought by consumers because of perceived animal welfare advantages, grazing systems provide the farmer and the animal with unique challenges. The system is dependent almost daily on the climate for feed supply, with the importation of large amounts of feed from off farm, and associated labour and mechanisation costs, sometimes reducing economic viability. Furthermore, the cow may have to walk long distances and be able to harvest feed efficiently in a highly competitive environment because of the need for high levels of pasture utilisation. She must, also, be: (1) highly fertile, with a requirement for pregnancy within ~80 days post-calving; (2) 'easy care', because of the need for the management of large herds with limited labour; (3) able to walk long distances; and (4) robust to changes in feed supply and quality, so that short-term nutritional insults do not unduly influence her production and reproduction cycles. These are very different and are in addition to demands placed on cows in housed systems offered pre-made mixed rations. Furthermore, additional demands in environmental sustainability and animal welfare, in conjunction with the need for greater system-level biological efficiency (i.e. 'sustainable intensification'), will add to the 'robustness' requirements of cows in the future. Increasingly, there is evidence that certain genotypes of cows perform better or worse in grazing systems, indicating a genotype×environment interaction. This has led to the development of tailored breeding objectives within countries for important heritable traits to maximise the profitability and sustainability of their production system. To date, these breeding objectives have focussed on the more easily measured traits and those of highest relative economic importance. In the future, there will be greater emphasis on more difficult to measure traits that are important to the quality of life of the animal in each production system and to reduce the system's environmental footprint.


Asunto(s)
Bienestar del Animal , Bovinos/fisiología , Fertilidad , Leche/metabolismo , Poaceae , Reproducción , Alimentación Animal , Animales , Cruzamiento , Bovinos/genética , Industria Lechera , Granjas , Femenino , Genotipo , Lactancia , Fenotipo , Embarazo , Calidad de Vida
8.
J Dairy Sci ; 101(3): 2448-2462, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248214

RESUMEN

The objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013-2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (-37 d), and produced more milk (+561 kg/ha) but less fat plus protein (-57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus protein per kg of BW/ha (0.90 kg) compared with HF cows (0.84 kg). The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based production systems.


Asunto(s)
Bovinos/genética , Industria Lechera/métodos , Leche , Alimentación Animal , Animales , Peso Corporal , Granjas , Femenino , Genotipo , Lactancia/genética , Estaciones del Año
9.
J Dairy Sci ; 100(12): 10189-10233, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29153162

RESUMEN

From 1917 to 2017, dairy grazing systems have evolved from uncontrolled grazing of unimproved pastures by dual-purpose dairy-beef breeds to an intensive system with a high output per unit of land from a fit-for-purpose cow. The end of World War I signaled significant government investments in agricultural research institutes around the world, which coincided with technological breakthroughs in milk harvesting and a recognition that important traits in both plants and animals could be improved upon relatively rapidly through genetic selection. Uptake of milk recording and herd testing increased rapidly through the 1920s, as did the recognition that pastures that were rested in between grazing events yielded more in a year than those continuously grazed. This, and the invention and refinement of the electric fence, led to the development of "controlled" rotational grazing. This, in itself, facilitated greater stocking rates and a 5 to 10% increase in milk output per hectare but, perhaps more importantly, it allowed a more efficient use of nitrogen fertilizer, further increasing milk output/land area by 20%. Farmer inventions led to the development of the herringbone and rotary milking parlors, which, along with the "unshortable" electric fence and technological breakthroughs in sperm dilution rates, allowed further dairy farm expansion. Simple but effective technological breakthroughs in reproduction ensured that cows were identified in estrus early (a key factor in maintaining the seasonality of milk production) and enabled researchers to quantify the anestrus problem in grazing herds. Genetic improvement of pasture species has lagged its bovine counterpart, but recent developments in multi-trait indices as well as investment in genetic technologies should significantly increase potential milk production per hectare. Decades of research on the use of feeds other than pasture (i.e., supplementary feeds) have provided consistent milk production responses when the reduction in pasture intake associated with the provision of supplementary feed (i.e., substitution rate) is accounted for. A unique feature of grazing systems research over the last 70 yr has been the use of multi-year farm systems experimentation. These studies have allowed the evaluation of strategic changes to a component of the system on all the interacting features of the system. This technique has allowed excellent component research to be "systemized" and is an essential part of the development of the intensive grazing production system that exists today. Future challenges include the provision of skilled labor or specifically designed automation to optimize farm management and both environmental sustainability and animal welfare concerns, particularly relating to the concentration of nitrogen in each urine patch and the associated risk of nitrate leaching, as well as concerns regarding exposure of animals to harsh climatic conditions. These combined challenges could affect farmers' "social license" to farm in the future.


Asunto(s)
Bovinos , Industria Lechera/métodos , Industria Lechera/tendencias , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Lactancia , Leche
10.
J Dairy Sci ; 100(9): 7556-7568, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28668528

RESUMEN

The objective of the experiment was to quantify the effect of stocking rate (SR) and animal genotype on milk production, dry matter intake (DMI), energy balance, and production efficiency across 2 consecutive grazing seasons (2014 and 2015). A total of 753 records from 177 dairy cows were available for analysis: 68 Holstein-Friesian and 71 Jersey × Holstein-Friesian (JxHF) cows each year of the experiment under a pasture-based seasonal production system. Animals within each breed group were randomly allocated to 1 of 3 whole-farm SR treatments defined in terms of body weight per hectare (kg of body weight/ha): low (1,200 kg of body weight/ha), medium (1,400 kg of body weight/ha), and high (1,600 kg of body weight/ha), and animals remained in the same SR treatments for the duration of the experiment. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique: March (spring), June (summer), and September (autumn), corresponding to 45, 111, and 209 d in milk, respectively. The effects of SR, animal genotype, season, and their interactions were analyzed using mixed models. Milk production, body weight, and production efficiency per cow decreased significantly as SR increased due to reduced herbage availability per cow and increased grazing severity. As a percentage of body weight, JxHF cows had higher feed conversion efficiency, higher DMI and milk solids (i.e., kg of fat + kg of protein) production, and also required less energy intake to produce 1 kg of milk solids. The increased production efficiency of JxHF cows at a similar body weight per hectare in the current analysis suggests that factors other than individual cow body weight contribute to the improved efficiency within intensive grazing systems. The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based milk production systems at higher SR where feed availability is restricted.


Asunto(s)
Alimentación Animal , Peso Corporal , Metabolismo Energético , Genotipo , Lactancia , Leche/metabolismo , Poaceae , Animales , Bovinos , Dieta , Femenino , Distribución Aleatoria , Estaciones del Año
11.
J Dairy Sci ; 99(7): 5916-5925, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27157574

RESUMEN

The effect of intensive agricultural systems on the environment is of increasing global concern, and recent review articles have highlighted the need for sustainable intensification of food production. In grazing dairy systems, the leaching of nitrate-N (NO3-N) to groundwater is a primary environmental concern. A herd-level factor considered by many to be a key contributor to the amount of NO3-N leached from dairy pastures is stocking rate (SR), and some countries have imposed limits to reduce the risk of NO3-N loss to groundwater. The objective of the current experiment was to determine the effect of dairy cow SR on NO3-N leached in a grazing system that did not import feed from off-farm and had the same N fertilizer input. Five SR were evaluated (2.2, 2.7, 3.1, 3.7, and 4.3 cows/ha) in a completely randomized design (i.e., 2 replicates of each SR as independent farmlets) over 2 y. Pasture utilization, milk production/hectare, and days in milk/hectare increased with SR, but days in milk/cow and milk production/cow declined. The concentration of NO3-N in drainage water and the quantity of NO3-N leached/ha per year declined linearly with increasing SR, and the operating profit/kg NO3-N leached per ha increased. Higher SR was associated with fewer days in milk/cow, resulting in a reduction in estimated urine N excretion/cow (the main source of N leaching) during the climatically sensitive period for NO3-N leaching (i.e., late summer to winter). We hypothesized that the reduction in estimated urine N excretion per cow led to an increase in urinary N spread and reduced losses from urine patches. The results presented indicate that lowering SR may not reduce nitrate leaching and highlight the need for a full farm system-level analysis of any management change to determine its effect on productivity and environmental outcomes.


Asunto(s)
Industria Lechera/métodos , Métodos de Alimentación/veterinaria , Alimentación Animal/análisis , Animales , Bovinos , Femenino , Nitratos/metabolismo , Nitrógeno/orina , Distribución Aleatoria , Estaciones del Año
12.
J Dairy Sci ; 99(7): 5681-5689, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27132092

RESUMEN

There is renewed interest in dairy cow crossbreeding in Ireland as a means to further augment productivity and profitability. The objective of the present study was to compare milk production and fertility performance for Holstein, Friesian, and Jersey purebred cows, and their respective crosses in 40 Irish spring-calving commercial dairy herds from the years 2008 to 2012. Data on 24,279 lactations from 11,808 cows were available. The relationship between breed proportion, as well as heterosis and recombination coefficients with performance, was quantified within a mixed model framework that also contained the fixed effects of parity; cow and contemporary group of herd-year-season of calving were both included as random effects in the mixed model. Breed proportion was associated with all milk production parameters investigated. Milk yield was greatest for Holstein (5,217kg), intermediate for Friesian (4,591kg), and least for Jersey (4,230kg), whereas milk constituents (i.e., fat and protein concentration) were greatest for Jersey (9.38%), intermediate for Friesian (7.91%), and least for Holstein (7.75%). Yield of milk solids in crossbred cows exceeded their respective parental average performance; greatest milk solids yield (i.e., fat kg + protein kg) was observed in the Holstein × Jersey first-cross, yielding 25kg more than the mid-parent mean. There was no consistent breed effect on the reproductive traits investigated. Relative to the mid-parent mean, Holstein × Jersey cows calved younger as heifers and had a shorter calving interval. Friesian × Jersey first-cross cows also had a shorter calving interval relative to their mid-parent mean. Results were consistent with findings from smaller-scale controlled experiments. Breed complementarity and heterosis attainable from crossbreeding resulted in superior animal performance and, consequently, greater expected profitability in crossbred cows compared with their respective purebreds.


Asunto(s)
Industria Lechera , Leche/metabolismo , Animales , Bovinos , Granjas , Femenino , Fertilidad , Lactancia , Estaciones del Año
13.
J Dairy Sci ; 99(7): 5904-5915, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27108176

RESUMEN

The productivity of grazing systems is primarily limited by the scale and efficiency of systems applied to the grazable land platform adjacent to the milking parlor. The objective of this study was to compare forage production, utilization and quality, milk production, and requirement for supplementary feeds for 2 different grazing platform stocking rate (GPSR) treatments over 4 yr. Animals were randomly allocated to 1 of 2 GPSR treatments: high-closed (HC; 3.1 cows/ha) and high-open (HO; 4.5 cows/ha), which were designed to represent alternative GPSR in a post-European Union milk quota, spring calving, pasture-based milk production system. Animal production data were analyzed using Proc MIXED of SAS with GPSR, year, and parity included as fixed effects in the final model. Within a seasonal spring calving grazing system, at high GPSR and offering moderate amounts of additional supplements based on pasture supply deficits, both systems produced more milk and fat plus protein per hectare in comparison with Irish commercial dairy farms. Although requiring additional supplementation, increased GPSR resulted in increased milk production per hectare but also in an increased requirement for concentrate and forage supplementation during lactation. No significant influence of GPSR was found on body weight and body condition score or reproductive performance during the 4-yr study period. In addition, GPSR also had no effect on pasture production, utilization, or quality during the study period. The strategic use of additional supplements with restricted pasture availability at higher GPSR maintained milk production per cow and significantly increased milk production per hectare.


Asunto(s)
Alimentación Animal/análisis , Industria Lechera/métodos , Industria Lechera/normas , Métodos de Alimentación/veterinaria , Lactancia/fisiología , Animales , Bovinos , Suplementos Dietéticos , Métodos de Alimentación/normas , Femenino , Leche/metabolismo , Embarazo , Distribución Aleatoria , Estaciones del Año
14.
J Dairy Sci ; 99(5): 3784-3797, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26898285

RESUMEN

The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait) utilization per hectare increased significantly with increasing SR (+0.026 and +0.081 for MSR and HSR, respectively). These results quantify the significant effect of grazing management practices on the feed production capability of modern perennial ryegrass pastures for intensive grazing dairy production systems. Furthermore, these results highlight the importance of consistently imposing grazing treatments over multiple years, and within integrated whole farm systems, to accurately assess the longer term effects of alternate grazing management practices on pasture productivity.


Asunto(s)
Alimentación Animal , Industria Lechera , Animales , Bovinos , Femenino , Lolium , Valor Nutritivo , Estaciones del Año
15.
J Dairy Sci ; 98(6): 4211-24, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25841970

RESUMEN

Economically viable and productive farming systems are required to meet the growing worldwide need for agricultural produce while at the same time reducing environmental impact. Within grazing systems of animal production, increasing concern exists as to the effect of intensive farming on potential N losses to ground and surface waters, which demands an appraisal of N flows within complete grass-based dairy farming systems. A 3-yr (2011 to 2013) whole-farm system study was conducted on a free-draining soil type that is highly susceptible to N loss under temperate maritime conditions. Soil solution concentrations of N from 3 spring-calving, grass-based systems designed to represent 3 alternative whole-farm stocking rate (SR) treatments in a post-milk quota situation in the European Union were compared: low (2.51 cows/ha), medium (2.92 cows/ha), and high SR (3.28 cows/ha). Each SR had its own farmlet containing 18 paddocks and 23 cows. Nitrogen loss from each treatment was measured using ceramic cups installed to a depth of 1m to sample the soil water. The annual and monthly average nitrate, nitrite, ammonia, and total N concentrations in soil solution collected were analyzed for each year using a repeated measures analysis. Subsequently, and based on the biological data collated from each farm system treatment within each year, the efficiency of N use was evaluated using an N balance model. Based on similar N inputs, increasing SR resulted in increased grazing efficiency and milk production per hectare. Stocking rate had no significant effect on soil solution concentrations of nitrate, nitrite, ammonia, or total N (26.0, 0.2, 2.4, and 32.3 mg/L, respectively). An N balance model evaluation of each treatment incorporating input and output data indicated that the increased grass utilization and milk production per hectare at higher SR resulted in a reduction in N surplus and increased N use efficiency. The results highlight the possibility for the sustainable intensification of grass-based dairy systems and suggest that, at the same level of N inputs, increasing SR has little effect on N loss in pastoral systems with limited imported feed. These results suggest that greater emphasis should be attributed to increased grass production and utilization under grazing to further improve the environmental impact of grazing systems.


Asunto(s)
Bovinos/fisiología , Industria Lechera/métodos , Nitratos/análisis , Contaminantes del Suelo/análisis , Animales , Femenino , Irlanda , Densidad de Población , Distribución Aleatoria
16.
J Dairy Sci ; 98(5): 3526-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25747836

RESUMEN

As land becomes a limiting resource for pasture-based dairy farming, the inclusion of purchased supplementary feeds to increase milk production per cow (through greater dry matter intake) and per hectare (through increased stocking rate) is often proposed as a strategy to increase profitability. Although a plausible proposition, virtually no analysis has been done on the effect of such intensification on the profitability of commercial pasture-based dairy farm businesses. The objective of this study was to characterize the average physical and financial performance of dairy systems differing in the proportion of the cow's diet coming from grazed pasture versus purchased supplementary feeds over 4 yr, while accounting for any interaction with geographic region. Physical, genetic, and financial performance data from 1,561 seasonal-calving, pasture-based dairy farms in Ireland were available between the years 2008 and 2011; data from some herds were available for more than 1 yr of the 4-yr study period, providing data from 2,759 dairy farm-years. The data set was divided into geographic regions, based on latitude, rainfall, and soil characteristics that relate to drainage; these factors influence the length of the pasture growth season and the timing of turnout to pasture in spring and rehousing in autumn. Farms were also categorized by the quantity of feed purchased; farms in which cows received <10, 11-20, 21-30, or >30% of their annual feed requirements from purchased feed were considered to be categories representative of increasing levels of system intensification. Geographic region was associated with differences in grazing days, pasture harvested per hectare, milk production per cow and per hectare, and farm profitability. Farms in regions with longer grazing seasons harvested a greater amount of pasture [an additional 19kg of dry matter (DM)/ha per grazing day per hectare], and greater pasture harvested was associated with increased milk component yield per hectare (58.4kg of fat and 51.4kg of protein more per tonne of DM pasture harvested/ha) and net profit per hectare (€268/ha more per tonne of DM harvested). Milk yield and yield of milk components per cow and per hectare increased linearly with increased use of purchased feed (additional 30.6kg of milk fat and 26.7kg of milk protein per tonne of DM purchased feed per hectare), but, on average, pasture harvested/hectare and net profit/hectare declined (-0.60 t of DM/ha and -€78.2/ha, respectively) with every tonne of DM supplementary feed purchased per hectare. The results indicate an effect of purchased feeds not usually accounted for in marginal economic analyses (e.g., milk to feed price ratio): the decline in pasture harvested/hectare, with the costs of producing the unutilized pasture in addition to the cost of feed resulting in a lower profit. In conclusion, greater milk component yields per cow were associated with increased profit per hectare, and a greater use of purchased feeds was associated with an increase in the yield of milk components. However, on average, increasing yield of milk components through the supply of purchased feeds to pasture-based cows was associated with a decline in pasture harvested per hectare and profitability. The decline in pasture harvested per hectare with increased use of purchased supplements per cow is probably the primary reason for the low milk production response and the failure to capitalize on the potential benefits of purchased supplements, with the associated costs of growing the unutilized pasture, in conjunction with increased nonfeed variable and fixed costs outweighing the increased milk production and revenue from supplementation. Farmers considering intensification through use of purchased supplements to increase the stock-carrying capacity of the farm (i.e., stocking rate) must ensure that they focus on management of pasture and total cost control to capture the potential benefits of supplementary feed use.


Asunto(s)
Alimentación Animal/economía , Industria Lechera/economía , Animales , Bovinos , Costos y Análisis de Costo/métodos , Dieta/economía , Dieta/veterinaria , Suplementos Dietéticos/economía , Femenino , Irlanda , Lactancia , Leche/economía , Leche/metabolismo , Análisis de Regresión , Estaciones del Año
17.
J Dairy Sci ; 97(3): 1693-706, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24440250

RESUMEN

The primary objective of the study was to quantify the effect of stocking rate (SR) and calving date (CD) on milk production, dry matter intake (DMI), energy balance (EB), and milk production efficiency over 4 consecutive years (2009 to 2012). Two groups of Holstein-Friesian dairy cows with different mean CD were established from within the existing research herd at Moorepark (Teagasc, Ireland). Animals were assigned to either an early calving (mean CD February 14) treatment or a late calving (mean CD March 2) treatment. Animals within each CD treatment were randomly allocated to 1 of 3 whole-farm SR treatments: low (LSR; 2.51 cows/ha), medium (MSR; 2.92 cows/ha), and high (HSR; 3.28 cows/ha), and animals remained on the same farmlet for the duration of the study. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique in March (spring), May (summer), and September (autumn), corresponding to, on average, 45, 132, and 258 d in milk, respectively. A total of 138 spring-calving dairy cows were used during each year of the study. The effects of SR, CD, season, and their interaction were studied using mixed models. Individual animal milk production, body weight, body condition score, and the efficiency of milk production were significantly decreased as SR increased due to a reduction in herbage availability. The existence of CD × SR × season interactions for production, DMI, and EB indicate that delaying the herd mean CD can be an effective strategy to minimize the reduction in animal performance, particularly in spring at higher SR. This study further confirms the benefits of a new approach to the evaluation of herbage allowance known as the individual herbage allowance, which encompasses the 3 main factors restricting DMI in rotational grazing; namely, the average daily herbage allowance of the group, the intake capacity of the individual animal within the group, and the relative intake capacity of the animal within the competing herd.


Asunto(s)
Constitución Corporal/fisiología , Peso Corporal/fisiología , Bovinos/fisiología , Industria Lechera/métodos , Conducta Alimentaria , Lactancia/fisiología , Reproducción , Animales , Bovinos/genética , Femenino , Irlanda , Leche/metabolismo , Distribución Aleatoria , Estaciones del Año
18.
J Dairy Sci ; 96(6): 4059-69, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23548283

RESUMEN

A stochastic whole-farm simulation model was used to examine alternative strategies for new entrant dairy farmers to grow and develop dairy farm businesses in the context of European Union (EU) milk quota abolition in 2015. Six alternative strategies were compared: remain static, natural growth expansion, waiting until after EU milk quota abolition to expand, a full-scale expansion strategy without milk quotas and not incurring super levy penalties, a full-scale expansion strategy with milk quotas and incurring super levy penalties, and once-a-day milking until EU milk quota abolition, followed by full-scale expansion. Each discrete whole farm investment strategy was evaluated over a 15-yr period (2013-2027) using multiple financial stability and risk indicators, including overall discounted farm business profitability, net worth change, return on investment, and financial risk. The results of this study indicate that, although associated with increased risk, dairy farm expansion will ensure the future profitability of the farm business. Within the context of EU milk quotas until 2015, the most attractive expansion strategy is to increase cow numbers while avoiding super levy fines using once-a-day milking techniques, increasing to the full capacity of the dairy farm once milk quotas are removed. In contrast, the results also indicate that dairy farms that remain static will experience a significant reduction in farm profitability in the coming year due to production cost inflation. Cash flow deficits were observed during the initial year of expansion and, therefore, rapidly expanding dairy farm businesses require a significant cash reserve to alleviate business risk during the initial year of expansion. The results of this analysis also indicate that dairy farm businesses that expand using lower cost capital investments and avoid milk quota super levy fines significantly reduce the financial risks associated with expansion.


Asunto(s)
Industria Lechera/economía , Unión Europea , Animales , Bovinos , Comercio/economía , Comercio/legislación & jurisprudencia , Costos y Análisis de Costo , Industria Lechera/legislación & jurisprudencia , Industria Lechera/métodos , Industria Lechera/estadística & datos numéricos , Femenino , Irlanda , Lactancia , Leche/economía
19.
Animal ; 6(7): 1031-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23031462

RESUMEN

Because not all animal factors influencing profitability can be included in total merit breeding indices for profitability, the association between animal total merit index and true profitability, taking cognisance of all factors associated with costs and revenues, is generally not known. One method to estimate such associations is at the herd level, associating herd average genetic merit with herd profitability. The objective of this study was to primarily relate herd average genetic merit for a range of traits, including the Irish total merit index, with indicators of performance, including profitability, using correlation and multiple regression analyses. Physical, genetic and financial performance data from 1131 Irish seasonal calving pasture-based dairy farms were available following edits; data on some herds were available for more than 1 year of the 3-year study period (2007 to 2009). Herd average economic breeding index (EBI) was associated with reduced herd average phenotypic milk yield but with greater milk composition, resulting in higher milk prices. Moderate positive correlations (0.26 to 0.61) existed between genetic merit for an individual trait and average herd performance for that trait (e.g. genetic merit for milk yield and average per cow milk yield). Following adjustment for year, stocking rate, herd size and quantity of purchased feed in the multiple regression analysis, average herd EBI was positively and linearly associated with net margin per cow and per litre as well as gross revenue output per cow and per litre. The change in net margin per cow per unit change in the total merit index was €1.94 (s.e. = 0.42), which was not different from the expectation of €2. This study, based on a large data set of commercial herds with accurate information on profitability and genetic merit, confirms that, after accounting for confounding factors, the change in herd profitability per unit change in herd genetic merit for the total merit index is within expectations.


Asunto(s)
Cruzamiento/economía , Bovinos/genética , Industria Lechera/economía , Fertilidad/genética , Leche/estadística & datos numéricos , Fenotipo , Animales , Cruzamiento/métodos , Industria Lechera/métodos , Femenino , Internet , Irlanda , Análisis de Regresión , Programas Informáticos
20.
J Dairy Sci ; 95(3): 1337-48, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22365215

RESUMEN

Two groups of Holstein-Friesian dairy cows with different mean calving dates (CD) were established from within the existing research herd at Moorepark (Teagasc, Ireland). Animals were assigned to either an early calving (mean CD February 12) treatment or a late calving (mean CD February 25) treatment. Animals within each CD treatment were randomly allocated to 1 of 3 stocking rate (SR) treatments, low (2.51 cows/ha), medium (2.92 cows/ha), or high (3.28 cows/ha), which were designed to represent 3 alternative whole-farm SR in a spring-calving, grass-based milk production system following abolition of the European Union milk quotas. A total of 138 spring-calving dairy cows, comprising 2 strains of Holstein-Friesian, North American (NA) and New Zealand (NZ), were used in each year (2009 and 2010). The effects of CD, SR treatment, genetic strain, and their interactions on reproductive performance, body weight, body condition score, blood metabolites, hormone and immunological parameters, and health status were analyzed. Stocking rate and CD had no effect on pregnancy rates, immunological parameters, or health status, although a tendency was observed for more reproductive intervention as SR increased. Earlier calving and increased SR also resulted in reduced body weight, body condition score, and metabolic status in early lactation. Strain of Holstein-Friesian also affected reproductive performance. The NZ strain tended to have a higher submission rate and 42 d pregnancy rate compared with the NA strain, and a strain by SR interaction was observed for pregnancy rate to first service. Earlier calving and increased SR can be achieved without adverse effects on overall pregnancy rates. The existence of a SR by strain interaction for several reproductive variables suggests that the smaller NZ strain is better adapted to increased SR systems.


Asunto(s)
Bovinos/fisiología , Industria Lechera/métodos , Reproducción/fisiología , Ácido 3-Hidroxibutírico/sangre , Animales , Glucemia/análisis , Peso Corporal/fisiología , Bovinos/metabolismo , Dieta/veterinaria , Ácidos Grasos no Esterificados/sangre , Femenino , Insulina/sangre , Lactancia/fisiología , Parto/fisiología , Embarazo , Somatomedinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA