Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neuromuscul Disord ; 33(3): 257-262, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36774715

RESUMEN

MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.


Asunto(s)
Contractura , Enfermedades Musculares , Humanos , Enfermedades Musculares/genética , Familia , Músculos/patología , Cadenas Pesadas de Miosina/genética
2.
Am J Clin Pathol ; 159(1): 81-88, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36315019

RESUMEN

OBJECTIVES: Present-day pathologists may be unfamiliar with the histopathologic features of measles, which is a reemerging disease. Awareness of these features may enable early diagnosis of measles in unsuspected cases, including those with an atypical presentation. Using archived tissue samples from historic patients, a unique source of histopathologic information about measles and other reemerging infectious diseases, we performed a comprehensive analysis of the histopathologic features of measles seen in commonly infected tissues during prodrome, active, and late phases of the disease. METHODS: Subspecialty pathologists analyzed H&E-stained slides of specimens from 89 patients accessioned from 1919 to 1998 and correlated the histopathologic findings with clinical data. RESULTS: Measles caused acute and chronic histopathologic changes, especially in the respiratory, lymphoid (including appendix and tonsils), and central nervous systems. Bacterial infections in lung and other organs contributed significantly to adverse outcomes, especially in immunocompromised patients. CONCLUSIONS: Certain histopathologic features, especially Warthin-Finkeldey cells and multinucleated giant cells without inclusions, allow pathologists to diagnose or suggest the diagnosis of measles in unsuspected cases.


Asunto(s)
Sarampión , Humanos , Sarampión/diagnóstico , Sarampión/microbiología , Sarampión/patología , Pulmón/patología , Células Gigantes/patología , Cuerpos de Inclusión/patología
4.
Brain ; 145(7): 2555-2568, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35788639

RESUMEN

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Adulto , Complejo Antígeno-Anticuerpo , Activación de Complemento , Células Endoteliales , Humanos , Inflamación , SARS-CoV-2
5.
Blood Cells Mol Dis ; 95: 102660, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35366607

RESUMEN

Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.


Asunto(s)
Anemia de Células Falciformes , 2,3-Difosfoglicerato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/análisis , Humanos , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Piperazinas , Quinolinas
6.
Blood Cells Mol Dis ; 86: 102493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32927249

RESUMEN

Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.


Asunto(s)
Anemia de Células Falciformes/patología , Células Endoteliales/patología , Estrés Oxidativo , Sustancia Blanca/patología , Anemia de Células Falciformes/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Sustancia Blanca/metabolismo
7.
Lupus ; 30(1): 52-60, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33135563

RESUMEN

The current project is to explore feasibility of direct intra-renal injection of human bone marrow derived mesenchymal stem cells (hMSC) for treatment of lupus nephritis in mice. The treatment protocol involved aged male BXSB (20 weeks) injected with 1 × 106 hMSC unilaterally under the renal capsule. Mice were harvested after 10 weeks follow-up for postmortem exam. Controls included untreated age matched male BXSB and healthy C57Bl/6. At the end of follow-up period, the survival of treated BXSB was 10 folds higher at 62.5% compared to survival of untreated control at 6.3%. The survival of C57Bl/6 remained at 100% with or without similar treatment. The renal pathology review was most significant for decreased tissue inflammation in treated BXSB compared to untreated controls. Renal tissue expression of IL-1b, IL17 were decreased and CTLA-4 was increased by RT PCR among treated compared to untreated BXSB. Thus, direct delivery of hMSC by intrarenal injection is a promising route for treatment of lupus nephritis as shown in this xenogeneic model. Further studies -using expanded numbers of mice to include other lupus strains- are warranted to investigate the mechanisms involved and to optimize treatment protocol for safety and efficacy.


Asunto(s)
Riñón/patología , Nefritis Lúpica/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Creatinina/orina , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Inyecciones , Nefritis Lúpica/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Proyectos Piloto , Albúmina Sérica/análisis
9.
Surg Neurol Int ; 11: 368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194301

RESUMEN

BACKGROUND: Pleomorphic xanthoastrocytomas (PXAs) are uncommon intradural and typically intramedullary astrocytic central nervous system tumors. Although they commonly occur supratentorially, they are rarely seen in the spine. CASE DESCRIPTION: A 43-year-old male presented with cervical neck pain and right-sided radicular symptoms. He was found to have an intradural extramedullary mass at the C5-C6 level. The lesion was fully excised and proved to be a PXA. Of interest, the lesion did not recur on postoperative MR imaging studies obtained 7 months later. CONCLUSION: While rare, primary intradural extramedullary spinal PXA has been reported. Here, we review such a lesion occurring in a 43-year-old male who did well following gross total excision of the tumor.

10.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217308

RESUMEN

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Enfermedades Musculares/genética , Mutación Missense , Adolescente , Adulto , Alelos , Animales , Caenorhabditis elegans , Femenino , Variación Genética , Humanos , Mutación con Pérdida de Función , Masculino , Músculo Esquelético/patología , Miofibrillas , Miosinas , Sarcómeros/metabolismo , Análisis de Secuencia de ARN , Transgenes , Secuenciación del Exoma , Adulto Joven
11.
Brain Res ; 1746: 146968, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533970

RESUMEN

Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Cerebelo/fisiopatología , Locomoción/fisiología , Estrés Oxidativo/fisiología , Sustancia Blanca/fisiopatología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Ataxia/etiología , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Sustancia Blanca/patología
12.
Ann Med Surg (Lond) ; 41: 20-28, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31011420

RESUMEN

BACKGROUND: Optimizing nerve regeneration and mitigating muscle atrophy are the keys to successful outcomes in peripheral nerve damage. We investigated whether mesenchymal stem cell (MSC) therapy can improve limb function recovery in peripheral nerve damage. MATERIALS AND METHODS: We used sciatic nerve transection/repair (SNR) and individual nerve transection/repair (INR; branches of sciatic nerve - tibial, peroneal, sural) models to study the effect of MSCs on proximal and distal peripheral nerve damages, respectively, in male Lewis rats. Syngeneic MSCs (5 × 106; passage≤6) or saline were administered locally and intravenously. Sensory/motor functions (SF/MF) of the limb were assessed. RESULTS: Rat MSCs (>90%) were CD29+, CD90+, CD34-, CD31- and multipotent. Total SF at two weeks post-SNR & INR with or without MSC therapy was ∼1.2 on a 0-3 grading scale (0 = No function; 3 = Normal); by 12 weeks it was 2.6-2.8 in all groups (n ≥ 9/group). MSCs accelerated SF onset. At eight weeks post-INR, sciatic function index (SFI), a measure of MF (0 = Normal; -100 = Nonfunctional) was -34 and -77 in MSC and vehicle groups, respectively (n ≥ 9); post-SNR it was -72 and -92 in MSC and vehicle groups, respectively. Long-term MF (24 weeks) was apparent in MSC treated INR (SFI -63) but not in SNR (SFI -100). Gastrocnemius muscle atrophy was significantly reduced (P < 0.05) in INR. Nerve histomorphometry revealed reduced axonal area (P < 0.01) but no difference in myelination (P > 0.05) in MSC treated INR compared to the naive contralateral nerve. CONCLUSION: MSC therapy in peripheral nerve damage appears to improve nerve regeneration, mitigate flexion-contractures, and promote limb functional recovery.

13.
Case Rep Genet ; 2018: 6898546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533233

RESUMEN

Individuals with Sickle Cell Trait (SCT), generally considered a benign carrier state of hemoglobin S (HbAS), are thought to be at risk for exertional rhabdomyolysis and hematuria, conditions that can also be caused by various other acquired and inherited factors. We report an SCT positive service member with an exertional rhabdomyolysis event, recurrent hematuria with transient proteinuria, and episodic burning pain in the lower extremities. Clinical and genetic studies revealed the multifactorial nature of his complex phenotype. The service member was taking prescription medications known to be associated with exertional rhabdomyolysis. He carried a pathogenic mutation, NPHS2 p.V260E, reported in nephropathy and a new variant p.R838Q in SCN11A, a gene involved in familial episodic pain syndrome. Results suggest that drug-to-drug interactions coupled with the stress of exercise, coinheritance of HbAS and NPHS2 p.V260E, and p. R838Q in SCN11A contributed to exertional rhabdomyolysis, recurrent hematuria with proteinuria, and episodic pain, respectively. This case underscores the importance of comprehensive clinical and genetic evaluations to identify underlying causes of health complications reported in SCT individuals.

14.
Mol Genet Metab Rep ; 16: 76-81, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30094188

RESUMEN

Exertional rhabdomyolysis is a metabolic event characterized by the release of muscle content into the circulation due to exercise-driven breakdown of skeletal muscle. Recurrent exertional rhabdomyolysis has been associated with metabolic myopathies and mitochondrial disorders, a clinically and genetically heterogeneous group of predominantly autosomal recessive, monogenic conditions. Although genetics factors are well recognized in recurrent rhabdomyolysis, the underlying causes and mechanisms of exercise-driven muscle breakdown remain unknown in a substantial number of cases. We present clinical and genetic study results from seven adult male subjects with recurrent exertional rhabdomyolysis. In all subject, whole exome sequencing identified multiple heterozygous variants in genes associated with monogenic metabolic and/or mitochondrial disorders. These variants consisted of known pathogenic and/or new likely pathogenic variants in combination with other rare deleterious alleles. The presence of heterozygous pathogenic and rare deleterious variants in multiple genes suggests an oligogenic inheritance for exertional rhabdomyolysis etiology. Our data imply that exertional rhabdomyolysis can reflect cumulative effects or synergistic interactions of deleterious variants in multiple genes that are likely to compromise muscle metabolism under the stress of exercise.

15.
Arthritis Care Res (Hoboken) ; 69(7): 1088-1094, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28129483

RESUMEN

OBJECTIVE: Autoantibodies recognizing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are associated with statin exposure, the HLA allele DRB1*11:01, and necrotizing muscle biopsies in adult myositis patients. The aim of this study was to characterize the features of juvenile anti-HMGCR-positive myositis patients. METHODS: The sera of 440 juvenile myositis patients were screened for anti-HMGCR autoantibodies. Demographic and clinical features, responses to therapy, and HLA alleles were assessed. The features of anti-HMGCR-positive patients were compared to those of previously described adult patients with this autoantibody and to children with other myositis-specific autoantibodies (MSAs). RESULTS: Five of 440 patients (1.1%) were anti-HMGCR-positive; none had taken statin medications. Three patients had rashes characteristic of juvenile dermatomyositis and 2 patients had immune-mediated necrotizing myopathies. The median highest creatine kinase (CK) level of anti-HMGCR-positive subjects was 17,000 IU/liter. All patients had severe proximal muscle weakness, distal weakness, muscle atrophy, joint contractures, and arthralgias, which were all more prevalent in HMGCR-positive subjects compared to MSA-negative patients or those with other MSAs. Anti-HMGCR-positive patients had only partial responses to multiple immunosuppressive medications, and their disease often took a chronic course. The DRB1*07:01 allele was present in all 5 patients, compared to 26.25% of healthy controls (corrected P = 0.01); none of the 5 juvenile patients had DRB1*11:01. CONCLUSION: Compared to children with other MSAs, muscle disease appears to be more severe in those with anti-HMGCR autoantibodies. Like adults, children with anti-HMGCR autoantibodies have severe weakness and high CK levels. In contrast to adults, in anti-HMGCR-positive children, there is a strong association with HLA-DRB1*07:01.


Asunto(s)
Acilcoenzima A/sangre , Autoanticuerpos/sangre , Miositis/sangre , Miositis/diagnóstico , Proteínas del Tejido Nervioso/sangre , Proteínas de Unión al ARN/sangre , Índice de Severidad de la Enfermedad , Adolescente , Biomarcadores/sangre , Niño , Preescolar , Femenino , Humanos , Masculino
16.
Radiographics ; 36(5): 1426-47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27618323

RESUMEN

White matter diseases include a wide spectrum of disorders that have in common impairment of normal myelination, either by secondary destruction of previously myelinated structures (demyelinating processes) or by primary abnormalities of myelin formation (dysmyelinating processes). The pathogenesis of many white matter diseases remains poorly understood. Demyelinating disorders are the object of this review and will be further divided into autoimmune, infectious, vascular, and toxic-metabolic processes. Autoimmune processes include multiple sclerosis and related diseases: tumefactive demyelinating lesions, Balo concentric sclerosis, Marburg and Schilder variants, neuromyelitis optica (Devic disease), acute disseminated encephalomyelitis, and acute hemorrhagic leukoencephalopathy (Hurst disease). Infectious processes include Lyme disease (neuroborreliosis), progressive multifocal leukoencephalopathy, and human immunodeficiency virus (HIV) encephalopathy. Vascular processes include different types of small-vessel disease: arteriolosclerosis, cerebral amyloid angiopathy, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), primary angiitis of the central nervous system, Susac syndrome, and neurolupus. Toxic-metabolic processes include osmotic myelinolysis, methotrexate leukoencephalopathy, and posterior reversible encephalopathy syndrome. The imaging spectrum can vary widely from small multifocal white matter lesions to confluent or extensive white matter involvement. Understanding the pathologic substrate is fundamental for understanding the radiologic manifestations, and a systematic approach to the radiologic findings, in correlation with clinical and laboratory data, is crucial for narrowing the differential diagnosis. (©)RSNA, 2016.


Asunto(s)
Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/patología , Imagen por Resonancia Magnética/métodos , Diagnóstico Diferencial , Humanos
17.
Lancet Neurol ; 15(9): 944-953, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27291520

RESUMEN

BACKGROUND: No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. METHODS: In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. FINDINGS: We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. INTERPRETATION: The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. FUNDING: Defense Health Program of the United States Department of Defense.


Asunto(s)
Astrocitos/patología , Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo/etiología , Cicatriz/etiología , Cicatriz/patología , Adulto , Anciano , Precursor de Proteína beta-Amiloide/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Autopsia , Encéfalo/metabolismo , Encéfalo/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Persona de Mediana Edad , PubMed/estadística & datos numéricos , Estados Unidos , Adulto Joven
18.
Mol Genet Metab ; 114(3): 474-82, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25577287

RESUMEN

Store-operated Ca(2+) entry is the major route of replenishment of intracellular Ca(2+) in animal cells in response to the depletion of Ca(2+) stores in the endoplasmic reticulum. It is primarily mediated by the Ca(2+)-selective release-activated Ca(2+) (CRAC) channel, which consists of the pore-forming subunits ORAI1-3 and the Ca(2+) sensors, STIM1 and STIM2. Recessive loss-of-function mutations in STIM1 or ORAI1 result in immune deficiency and nonprogressive myopathy. Heterozygous gain-of-function mutations in STIM1 cause non-syndromic myopathies as well as syndromic forms of miosis and myopathy with tubular aggregates and Stormorken syndrome; some of these syndromic forms are associated with thrombocytopenia. Increased concentration of Ca(2+) as a result of store-operated Ca(2+) entry is essential for platelet activation. The York Platelet syndrome (YPS) is characterized by thrombocytopenia, striking ultrastructural platelet abnormalities including giant electron-opaque organelles and massive, multilayered target bodies and deficiency of platelet Ca(2+) storage in delta granules. We present clinical and molecular findings in 7 YPS patients from 4 families, demonstrating that YPS patients have a chronic myopathy associated with rimmed vacuoles and heterozygous gain-of-function STIM1 mutations. These findings expand the phenotypic spectrum of STIM1-related human disorders and define the molecular basis of YPS.


Asunto(s)
Plaquetas/patología , Canalopatías/genética , Proteínas de la Membrana/genética , Enfermedades Musculares/genética , Proteínas de Neoplasias/genética , Adulto , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Plaquetas/fisiología , Plaquetas/ultraestructura , Calcio/metabolismo , Niño , Preescolar , Dislexia/genética , Dislexia/metabolismo , Eritrocitos Anormales/metabolismo , Exoma/genética , Femenino , Heterocigoto , Humanos , Ictiosis/genética , Ictiosis/metabolismo , Lactante , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Miosis/genética , Miosis/metabolismo , Fatiga Muscular/genética , Enfermedades Musculares/metabolismo , Mutación , Linaje , Análisis de Secuencia de ADN , Bazo/anomalías , Bazo/metabolismo , Molécula de Interacción Estromal 1 , Trombocitopenia
19.
Trans Am Ophthalmol Soc ; 112: 11-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25411512

RESUMEN

PURPOSE: To determine whether p16, a molecular marker of cellular senescence, and CD68, a microglial marker, are detectible in optic nerve glioma tissue stored for decades, thus providing potential targets for pharmacologic intervention. METHODS: Cases were retrieved from the Armed Forces Institute of Pathology Registry of Ophthalmic Pathology. Clinical information was tabulated. In specimens with sufficient tissue, a tissue microarray was constructed to conduct molecular studies. RESULTS: Ninety-two cases were included: gender distribution was in a ratio of one male to 1.6 females, and age range was 2 months to 50 years (average age, 10.8 years). Neurofibromatosis type 1 was identified in 10 cases (10.8%). The majority presented with decreased vision and exophthalmos. Forty-eight cases were studied by a tissue microarray construction. Glial fibrillary acidic protein, a control for immunoreactivity, was positive in 46 cases (96%). Immunoreactivity for p16 protein was seen in 36 cases (75%) and CD68-positive cells in 34 (71%). Limitations include referral bias, limited clinical information, limited amount of tissue, and extended period of tissue preservation. CONCLUSIONS: Optic nerve glioma is a tumor of the visual axis in young individuals, which is generally indolent but with a variable clinical course. Traditional histopathologic techniques have not been reliably predictive of clinical course. This microarray contains tumors with representative demographic, clinical, and histologic characteristics for optic nerve glioma. Immunoreactivity for p16 protein and CD68 is positive in the majority. These findings suggest a possible explanation for the variable clinical course and identify therapeutic targets in the cell senescence and microglial pathways.


Asunto(s)
Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Biomarcadores de Tumor/análisis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Glioma del Nervio Óptico/química , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Manejo de Especímenes , Factores de Tiempo , Análisis de Matrices Tisulares , Conservación de Tejido , Adulto Joven
20.
Acta Neuropathol Commun ; 2: 153, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25422066

RESUMEN

INTRODUCTION: Blast injury to brain, a hundred-year old problem with poorly characterized neuropathology, has resurfaced as health concern in recent deployments in Iraq and Afghanistan. To characterize the neuropathology of blast injury, we examined the brains of veterans for the presence of amyloid precursor protein (APP)-positive axonal swellings typical of diffuse axonal injury (DAI) and compared them to healthy controls as well as controls with opiate overdose, anoxic-ischemic encephalopathy, and non-blast TBI (falls and motor vehicle crashes). RESULTS: In cases with blast history, we found APP (+) axonal abnormalities in several brain sites, especially the medial dorsal frontal white matter. In white matter, these abnormalities were featured primarily by clusters of axonal spheroids or varicosities in a honeycomb pattern with perivascular distribution. Axonal abnormalities colocalized with IBA1 (+) reactive microglia and had an appearance that was distinct from classical DAI encountered in TBI due to motor vehicle crashes. Opiate overdose cases also showed APP (+) axonal abnormalities, but the intensity of these lesions was lower compared to cases with blast histories and there was no clear association of such lesions with microglial activation. CONCLUSIONS: Our findings demonstrate that many cases with history of blast exposure are featured by APP (+) axonopathy that may be related to blast exposure, but an important role for opiate overdose, antemortem anoxia, and concurrent blunt TBI events in war theater or elsewhere cannot be discounted.


Asunto(s)
Traumatismos por Explosión/complicaciones , Encéfalo/metabolismo , Encéfalo/patología , Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/patología , Accidentes por Caídas , Adolescente , Adulto , Precursor de Proteína beta-Amiloide/metabolismo , Axones/metabolismo , Axones/patología , Proteínas de Unión al Calcio , Proteínas de Unión al ADN/metabolismo , Lesión Axonal Difusa/etiología , Sobredosis de Droga/metabolismo , Sobredosis de Droga/patología , Femenino , Humanos , Masculino , Proteínas de Microfilamentos , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Vehículos a Motor , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/patología , Veteranos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...