Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Res ; 2024: 9307906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516617

RESUMEN

A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.


Asunto(s)
Aloe , Inmunosenescencia , Humanos , Ratones , Animales , Anciano , Galactosa/farmacología , Polifenoles/farmacología , Envejecimiento , Polisacáridos/farmacología , Estrés Oxidativo
2.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138452

RESUMEN

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Asunto(s)
Proteínas de Plantas , Raphanus , Humanos , Proteínas de Plantas/farmacología , Proteínas de Plantas/metabolismo , Leucocitos Mononucleares/metabolismo , Factor de Transferencia , Plantas/metabolismo , Planta de la Mostaza/metabolismo
3.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764336

RESUMEN

HMGB1 is a key late inflammatory mediator upregulated during air-pollution-induced oxidative stress. Extracellular HMGB1 accumulation in the airways and lungs plays a significant role in the pathogenesis of inflammatory lung injury. Decreasing extracellular HMBG1 levels may restore innate immune cell functions to protect the lungs from harmful injuries. Current therapies for air-pollution-induced respiratory problems are inadequate. Dietary antioxidants from natural sources could serve as a frontline defense against air-pollution-induced oxidative stress and lung damage. Here, a standardized botanical antioxidant composition from Scutellaria baicalensis and Acacia catechu was evaluated for its efficacy in attenuating acute inflammatory lung injury and sepsis. Murine models of disorders, including hyperoxia-exposed, bacterial-challenged acute lung injury, LPS-induced sepsis, and LPS-induced acute inflammatory lung injury models were utilized. The effect of the botanical composition on phagocytic activity and HMGB1 release was assessed using hyperoxia-stressed cultured macrophages. Analyses, such as hematoxylin-eosin (HE) staining for lung tissue damage evaluation, ELISA for inflammatory cytokines and chemokines, Western blot analysis for proteins, including extracellular HMGB1, and bacterial counts in the lungs and airways, were performed. Statistically significant decreases in mortality (50%), proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and chemokines (CINC-3) in serum and bronchoalveolar lavage fluid (BALF), and increased bacterial clearance from airways and lungs; reduced airway total protein, and decreased extracellular HMGB1 were observed in in vivo studies. A statistically significant 75.9% reduction in the level of extracellular HMGB1 and an increase in phagocytosis were observed in cultured macrophages. The compilations of data in this report strongly suggest that the botanical composition could be indicated for oxidative-stress-induced lung damage protection, possibly through attenuation of increased extracellular HMGB1 accumulation.


Asunto(s)
Lesión Pulmonar Aguda , Proteína HMGB1 , Hiperoxia , Animales , Ratones , Lipopolisacáridos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Citocinas , Antioxidantes/farmacología
4.
J Med Food ; 26(7): 489-499, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37192488

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated and unbalanced immune response to microbial infection. Restoring immune homeostasis and infection control are considered the primary strategies to manage sepsis. Natural bioactives such as polysaccharide and polyphenols from botanicals are known for their immune modulation activity. In this study, we evaluated a standardized aloe-based composition, UP360 (constitute of polysaccharides from Aloe barbadense and Poria cocos and polyphenols from Rosemary officinalis) in lipopolysaccharide (LPS)-induced sepsis and acute inflammatory lung injury murine models. Prophylactic oral administration of UP360 for 7 days at an oral dose of 500 mg/kg improved the survival rate of mice by 62.5%, whereas all mice in the vehicle control group were deceased 82 h after LPS injection. The merit of combining these traditional herbs to yield the standardized composition UP360 was also demonstrated in this model with a mortality rate of only 30.8%, whereas 76.9%, 53.9%, and 61.5% were recorded for each individual constituents A. barbadense, P. cocos, and R. officinalis, respectively. Dose-correlated statistically significant reductions in proinflammatory cytokines and chemokine tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-3 were observed for UP360 when administered at 250 and 500 mg/kg orally for 7 days before induction of acute lung injury (ALI) model in rats. The histopathology data from lung showed statistically significant 37.9% and 37% reductions in the overall lung damage severity and pulmonary edema, respectively, for UP360-treated rats. The aloe-based composition UP360 effectively improved the survival rate of septic animals and mitigated the severity of LPS-induced ALI in vivo. These data warrant further investigation of the composition for a potential application in human as an adjunct supplement in respiratory distress and sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Aloe , Rosmarinus , Sepsis , Wolfiporia , Humanos , Ratones , Ratas , Animales , Lipopolisacáridos/efectos adversos , Modelos Animales de Enfermedad , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Pulmón , Citocinas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Sepsis/tratamiento farmacológico , Polifenoles/efectos adversos
5.
J Med Food ; 24(9): 960-967, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33570460

RESUMEN

Symptom-alleviating therapies for osteoarthritis (OA) management are inadequate. Long-term application of first-line treatments, such as nonsteroidal anti-inflammatory drugs, is limited due to associated side effects. We believe that a combination of traditionally used botanical extracts, which have diverse active components that target multiple inflammatory pathways, may provide a safe and efficacious alternative to address the multifactorial nature of OA. Recently, cannabidiol (CBD), the major nonpsychoactive component of the hemp plant, has gained renewed global attention for its pharmacological actions. It has shown promise in reducing pain and inflammation in preclinical models of arthritis. In this study, widely employed inflammatory and noninflammatory animal pain models, such as the hot plate test, visceral pain model (writhing test), and carrageenan-induced rat paw edema model, were utilized to evaluate the antinociceptive and anti-inflammatory activity of CBD alone and in combination with standardized bioflavonoid compositions. CBD was tested at 5, 10, 20, and 40 mg/kg orally and at 5% topically. Administered alone, CBD produced dose-correlated, statistically significant pain inhibition in all the models. Enhanced performance in pain and inflammation reduction was observed when CBD was orally administered in complex with the bioflavonoid compositions. Data from this study show that for clinically meaningful efficacy against OA, CBD may have to be delivered in higher dosage or formulated with other medicinal plants with similar activities.


Asunto(s)
Cannabidiol , Analgésicos , Animales , Antiinflamatorios/uso terapéutico , Cannabidiol/uso terapéutico , Carragenina , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Flavonoides/uso terapéutico , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Ratas
6.
Nutrients ; 11(2)2019 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691120

RESUMEN

Osteoarthritis (OA) is characterized by progressive articular cartilage degradation. Although there have been significant advances in OA management, to date, there are no effective treatment options to modify progression of the disease. We believe these unmet needs could be bridged by nutrients from natural products. Collagen induced arthritis in rats was developed and utilized to evaluate anti-inflammatory and cartilage protection activity of orally administered botanical composition, UP1306 (50 mg/kg) and Methotrexate (75 µg/kg) daily for three weeks. Objective arthritis severity markers, urine, synovial lavage, and serum were collected. At necropsy, the hock joint from each rat was collected for histopathology analysis. Urinary cartilage degradation marker (CTX-II), pro-inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and IL-6), and proteases (Matrix Metallopeptidase 3 (MMP3) and 13) were measured. Rats treated with UP1306 showed statistically significant improvements in arthritis severity markers, including uCTX-II (91.4% vs. collagen-induced arthritis (CIA)), serum IL-1ß, TNF-α, and IL-6 levels as well as synovial MMP-13. The histopathology data were also well aligned with the severity score of arthritis for both UP1306 and Methotrexate. UP1306, a botanical composition that contains a standardized blend of extracts from the heartwood of Acacia catechu and the root bark of Morus alba, could potentially be considered as a dietary supplement product for the management of arthritis.


Asunto(s)
Acacia/química , Artritis Experimental/tratamiento farmacológico , Morus/química , Extractos Vegetales , Animales , Artritis Experimental/patología , Citocinas/metabolismo , Masculino , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Articulaciones Tarsianas/química , Articulaciones Tarsianas/efectos de los fármacos , Articulaciones Tarsianas/patología
7.
Artículo en Inglés | MEDLINE | ID: mdl-28904559

RESUMEN

Although there have been augmented advances in drug discovery, current OA management is inadequate due to the lack of successful therapies proven to be effective in modifying disease progression. For some, the risk outweighs the benefit. As a result, there is a desperate need for safe and efficacious natural alternatives. Here we evaluated a composition from Morus alba, Scutellaria baicalensis, and Acacia catechu in maintaining joint structural integrity and alleviating OA associated symptoms in monoiodoacetate- (MIA-) induced rat OA disease model. Study lasted for 6 weeks. 59.6%, 64.6%, 70.7%, 69.9%, and 70.3% reductions in pain sensitivity were observed for rats treated with the composition from week 1 to week 5, respectively. Statistically significant improvements in articular cartilage matrix integrity (maintained at 57.1% versus MIA + vehicle treated rats) were shown from the modified total Mankin score for animals treated with the composition. The composition showed a statistically significant reduction in uCTX-II level (54.1% reductions). The merit of combining these botanicals was also demonstrated in their synergistic analgesic activity. Therefore, the standardized blend of Morus alba, Scutellaria baicalensis, and Acacia catechu could potentially be considered as an alternative remedy from natural sources for the management of OA and/or its associated symptoms.

8.
J Med Food ; 20(6): 568-576, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28362543

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive articular cartilage degradation manifested with significant functional impairment in consort with signs and symptoms of inflammation, stiffness, and loss of mobility. Current OA management is inadequate due to the lack of nominal therapies proven to be effective in hampering disease progression where symptomatic therapy focused intervention masks the primary etiology leading to irreversible structural damage. In this study, we describe the effect of UP1306, a composition containing a proprietary blend of two standardized extracts from the heartwood of Acacia catechu and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate (MIA)-induced rat OA disease model. Data from pain sensitivity, histopathology, and glycosaminoglycan (GAG) level were analyzed. Diclofenac at 10 mg/kg was used as a reference compound. Ex vivo proteoglycan protection model demonstrated 31.5%, 50.0%, and 54.8% inhibitions of proteoglycan degradations from UP1306 at concentrations of 50, 100, and 200 µg/mL, respectively. The merit of combining two bioflavonoid standardized extracts from A. catechu and M. alba was demonstrated in their Ex vivo synergistic proteoglycan protection activity. In the MIA in vivo OA model, administered orally at 500 mg/kg, UP1306 resulted in reductions of 17.5%, 29.0%, 34.4%, 33.5%, and 40.9% through week 1-5 in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, and minimal subchondral bone damage. Therefore, UP1306 could potentially be considered as an alternative remedy from natural sources for the management of OA and/or its associated symptoms.


Asunto(s)
Acacia/química , Cartílago Articular/efectos de los fármacos , Morus/química , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Humanos , Osteoartritis/metabolismo , Dolor/metabolismo , Extractos Vegetales/química , Conejos , Ratas , Ratas Sprague-Dawley
9.
G3 (Bethesda) ; 7(3): 991-1000, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28122949

RESUMEN

Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation.


Asunto(s)
Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Animales , Caenorhabditis elegans/genética , Compartimento Celular , Membrana Celular/metabolismo , Clonación Molecular , Endocitosis/genética , Genes de Helminto , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Homología de Secuencia de Ácido Nucleico
10.
Cell Adh Migr ; 7(2): 187-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23303343

RESUMEN

MUC1 is a transmembrane mucin that is often overexpressed in metastatic cancers and often used as a diagnostic marker for metastatic progression. The extracellular domain of MUC1 can serve as a ligand for stromal and endothelial cell adhesion receptors, and the cytoplasmic domain engages in several interactions that can result in increased migration and invasion, as well as survival. In this review, we address the role of MUC1 in metastatic progression by assessing clinical studies reporting MUC1 levels at various disease stages, reviewing mouse models utilized to study the role of MUC1 in metastatic progression, discuss mechanisms of MUC1 upregulation, and detail MUC1 protein interactions and signaling events. We review interactions between MUC1 and the extracellular environment, with proteins colocalized in the plasma membrane and/or cytoplasmic proteins, and summarize the role of MUC1 in the nucleus as a transcriptional cofactor. Finally, we review recent publications describing current therapies targeting MUC1 in patients with advanced disease and the stage of these therapies in preclinical development or clinical trials.


Asunto(s)
Mucina-1/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Células Neoplásicas Circulantes/metabolismo
11.
Mol Cancer Res ; 10(12): 1544-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23193156

RESUMEN

The transmembrane mucin MUC1 is overexpressed in most ductal carcinomas, and its overexpression is frequently associated with metastatic progression. MUC1 can drive tumor initiation and progression via interactions with many oncogenic partners, including ß-catenin, the EGF receptor (EGFR) and Src. The decoy peptide protein transduction domain MUC1 inhibitory peptide (PMIP) has been shown to inhibit the tumor promoting activities of MUC1 in breast and lung cancer, including cell growth and invasion, and its usage suppresses metastatic progression in mouse models of breast cancer. To further characterize the reduced metastasis observed upon PMIP treatment, we conducted motility assays and observed that PMIP inhibits cell motility of breast cancer cells. To determine the mechanism by which PMIP inhibits motility, we evaluated changes in global gene transcription upon PMIP treatment, and identified a number of genes with altered expression in response to PMIP. Among these genes is the metastatic mediator, c-Met, a transmembrane tyrosine kinase that can promote cell scattering, migration, and invasion. To further investigate the role of c-Met in MUC1-dependent metastatic events, we evaluated the effects of MUC1 expression and EGFR activation on breast cancer cell scattering, branching, and migration. We found that MUC1 strongly promoted all of these events and this effect was further amplified by EGF treatment. Importantly, the effect of MUC1 and EGF on these phenotypes was dependent upon c-Met activity. Overall, these results indicate that PMIP can block the expression of a key metastatic mediator, further advancing its potential use as a clinical therapeutic.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular/genética , Mucina-1/genética , Mucina-1/metabolismo , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Transcripción Genética/efectos de los fármacos
12.
J Lipid Res ; 53(12): 2797-805, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22911046

RESUMEN

Primary adipocyte isolation by collagenase digestion is a widely used technique to study metabolic regulation and insulin action in adipocytes. However, induction of a proinflammatory response characterized by enhanced secretion of interleukin (IL)-6 has been tightly linked to the isolation process itself. To test the hypothesis that the shaking mechanical force exerted on adipocytes stimulates inflammation during isolation, rat primary adipocytes were prepared by collagenase digestion in orbital shaking incubators maintained at varying speeds. Contrary to expectation, the isolation-induced release of IL-6 was attenuated by increasing the rotational speed of digestion and the concentration of collagenase, both of which resulted in rapid dissociation of adipocytes from the vasculature. In addition, the attenuation of IL-6 secretion was associated with decreased phosphorylation of the stress-related p38 mitogen-activated protein kinase (p38 MAPK) and preserved insulin action. The data suggest that optimization of parameters including, but not limited to, mincing technique, time of digestion, and collagenase concentration will make it possible to isolate primary adipocytes without activation of a proinflammatory response leading to elevated secretion of IL-6.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Artefactos , Separación Celular/métodos , Interleucina-6/metabolismo , Animales , Insulina/metabolismo , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...