Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(2): e0247241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606791

RESUMEN

Predation mortality can influence the distribution and abundance of fish populations. While predation is often assessed using direct observations of prey consumption, potential predation can be predicted from co-occurring predator and prey densities under varying environmental conditions. Juvenile Pacific salmon Oncorhynchus spp. (i.e., smolts) from the Columbia River Basin experience elevated mortality during the transition from estuarine to ocean habitat, but a thorough understanding of the role of predation remains incomplete. We used a Holling type II functional response to estimate smolt predation risk based on observations of piscivorous seabirds (sooty shearwater [Ardenna griseus] and common murre [Uria aalge]) and local densities of alternative prey fish including northern anchovy (Engraulis mordax) in Oregon and Washington coastal waters during May and June 2010-2012. We evaluated predation risk relative to the availability of alternative prey and physical factors including turbidity and Columbia River plume area, and compared risk to returns of adult salmon. Seabirds and smolts consistently co-occurred at sampling stations throughout most of the study area (mean = 0.79 ± 0.41, SD), indicating that juvenile salmon are regularly exposed to avian predators during early marine residence. Predation risk for juvenile coho (Oncorhynchus kisutch), yearling Chinook salmon (O. tshawytscha), and subyearling Chinook salmon was on average 70% lower when alternative prey were present. Predation risk was greater in turbid waters, and decreased as water clarity increased. Juvenile coho and yearling Chinook salmon predation risk was lower when river plume surface areas were greater than 15,000 km2, while the opposite was estimated for subyearling Chinook salmon. These results suggest that plume area, turbidity, and forage fish abundance near the mouth of the Columbia River, all of which are influenced by river discharge, are useful indicators of potential juvenile salmon mortality that could inform salmonid management.


Asunto(s)
Aves/fisiología , Peces/fisiología , Oncorhynchus kisutch/crecimiento & desarrollo , Conducta Predatoria/fisiología , Animales , Animales Recién Nacidos , Oregon , Dinámica Poblacional , Ríos , Washingtón
2.
Ecol Appl ; 30(8): e02204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32608148

RESUMEN

In coastal marine ecosystems, the depletion of dissolved oxygen can cause behavioral and distributional shifts of organisms and thereby alter ecological processes. We used the spatiotemporal variation in the onset and intensity of low dissolved oxygen in Hood Canal, Washington, USA, to investigate consequences of seasonally reduced oxygen on fish-zooplankton predator-prey interactions. By simultaneously monitoring densities of zooplankton (primarily the euphausiid; Euphausia pacifica) and zooplanktivorous fish (Pacific herring, Clupea pallasii, and Pacific hake, Mercluccius productus), and the feeding of zooplanktivorous fish, we could separate the effects of dissolved oxygen on fish-zooplankton interactions from other seasonal changes. We expected that fish predators (especially Pacific herring) would be less abundant and have lower feeding rates when oxygen levels declined below biological thresholds, and that this would result in increased zooplankton abundance in areas with lowest dissolved oxygen. However, these expectations were not borne out. Overall, there was mixed evidence for an effect of dissolved oxygen on many of our response variables, and when effects were detected, they were frequently in the opposite direction of our expectations. Specifically, the pelagic fish community became more abundant (as measured by increasing acoustic backscatter), which was particularly pronounced for Pacific herring. Zooplankton had weak evidence for a response to dissolved oxygen, but the direction was negative instead of positive. Although predator feeding composition was unrelated to dissolved oxygen, stomach fullness (an index of feeding intensity) of Pacific herring declined, as per our expectations. These unexpected findings highlight the importance of in situ measurements of multiple aspects of predator-prey linkages in response to environmental stress to enhance our ability to predict ecological consequences of declining oxygen.


Asunto(s)
Estuarios , Cadena Alimentaria , Animales , Ecosistema , Peces , Oxígeno , Washingtón
3.
Ecol Evol ; 9(8): 4805-4819, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031946

RESUMEN

Studies estimating species' distributions require information about animal locations in space and time. Location data can be collected using surveys within a predetermined frame of reference (i.e., Eulerian sampling) or from animal-borne tracking devices (i.e., Lagrangian sampling). Integration of observations obtained from Eulerian and Lagrangian perspectives can provide insights into animal movement and habitat use. However, contemporaneous data from both perspectives are rarely available, making examination of biases associated with each sampling approach difficult. We compared distributions of a mobile seabird observed concurrently from ship, aerial, and satellite tag surveys during May, June, and July 2012 in the northern California Current. We calculated utilization distributions to quantify and compare variability in common murre (Uria aalge) space use and examine how sampling perspective and platform influence observed patterns. Spatial distributions of murres were similar in May, regardless of sampling perspective. Greatest densities occurred in coastal waters off southern Washington and northern Oregon, near large murre colonies and the mouth of the Columbia River. Density distributions of murres estimated from ship and aerial surveys in June and July were similar to those observed in May, whereas distributions of satellite-tagged murres in June and July indicated northward movement into British Columbia, Canada, resulting in different patterns observed from Eulerian and Lagrangian perspectives. These results suggest that the population of murres observed in the northern California Current during spring and summer includes relatively stationary individuals attending breeding colonies and nonstationary, vagile adults and subadults. Given the expected growth of telemetry studies and advances in survey technology (e.g., unmanned aerial systems), these results highlight the importance of considering methodological approaches, spatial extent, and synopticity of distribution data sets prior to integrating data from different sampling perspectives.

4.
Environ Monit Assess ; 190(6): 348, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777392

RESUMEN

Distributed networks of stationary instruments provide high temporal scope (i.e., range/resolution) observations but are spatially limited as a set of point measurements. Measurement similarity between points typically decays with distance, which is used to set interpolation distances. The importance of analyzing spatiotemporal data at equivalent spatial and temporal scales has been identified but no standard procedure is used to interpolate space using temporally-indexed observations. Using concurrent mobile and stationary active acoustic, fish density data from a tidal energy site in Puget Sound, WA, USA, six methods are compared to estimate the range at which stationary measurements can be spatially interpolated. Four methods estimate the representative range of the mean using autocorrelation or paired t-test and repeated measures ANOVA. Accuracy of resulting sensor density estimates was modeled as departures from interpolated linear and aerial estimates. Two methods were used to estimate representative range of the variance by comparing theoretical spectra or by determining equivalent spatial and temporal scales. Representative ranges of means extended from 30.57 to 403.9 m. Estimation error (i.e., standard deviation) ranges of linearly interpolated or aerially extrapolated values ranged from 42.5 to 82.3%. Representative ranges using variance measurements differed by a factor of approximately two (scale equivalence = 648.7 m, theoretical = 1388.1 m). A six-step decision tree is presented to guide identification of monitoring variables and choice of method to calculate representative ranges in distributed networks. This approach is applicable for networks of any size, in aquatic or terrestrial environments, and monitoring the mean or variance of any quantity.


Asunto(s)
Bahías/análisis , Monitoreo del Ambiente/métodos , Peces/fisiología , Análisis Espacio-Temporal , Acústica , Animales , Densidad de Población , Washingtón
5.
J Acoust Soc Am ; 138(6): 3742-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26723330

RESUMEN

Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m(2)) was calculated as a function of insonifying frequency (f = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge.


Asunto(s)
Acústica , Ecosistema , Modelos Teóricos , Sonido , Agua , Animales , Simulación por Computador , Análisis de Elementos Finitos , Peces , Movimiento (Física) , Análisis Numérico Asistido por Computador , Dispersión de Radiación , Factores de Tiempo , Zooplancton
6.
J Acoust Soc Am ; 128(4): 2225-32, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20968392

RESUMEN

The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.


Asunto(s)
Discriminación en Psicología , Ecolocación , Conducta Predatoria , Salmón/anatomía & histología , Vocalización Animal , Orca/fisiología , Acústica/instrumentación , Sacos Aéreos/anatomía & histología , Sacos Aéreos/diagnóstico por imagen , Animales , Señales (Psicología) , Oncorhynchus kisutch/anatomía & histología , Radiografía , Reconocimiento en Psicología , Dispersión de Radiación , Espectrografía del Sonido , Factores de Tiempo , Transductores
7.
J Acoust Soc Am ; 115(2): 901-9, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15000201

RESUMEN

Fish-eating "resident"-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re: 1 microPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.


Asunto(s)
Delfines/fisiología , Ecolocación/fisiología , Conducta Predatoria/fisiología , Salmón , Animales , Colombia Británica , Enmascaramiento Perceptual/fisiología , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...