Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 191, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664396

RESUMEN

Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger pyroptosis-like cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.

2.
Antiviral Res ; 224: 105857, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453031

RESUMEN

The emerging SARS-CoV-2 variants are evolving to evade human immunity and differ in their pathogenicity. While evasion of the variants from adaptive immunity is widely investigated, there is a paucity of knowledge about their interactions with innate immunity. Inflammasome assembly is one of the most potent mechanisms of the early innate response to viruses, but when it is inappropriate, it can perpetuate tissue damage. In this study, we focused on the capacity of SARS-CoV-2 Alpha and Delta variants to activate the NLRP3 inflammasome. We compared the macrophage activation, particularly the inflammasome formation, using Alpha- and Delta-spike virus-like particles (VLPs). We found that VLPs of both variants activated the inflammasome even without a priming step. Delta-spike VLPs had a significantly stronger effect on triggering pyroptosis and inflammasome assembly in THP-1 macrophages than did Alfa-spike VLPs. Cells treated with Delta VLPs showed greater cleavage of caspase-1 and IL-1ß release. Furthermore, Delta VLPs induced stronger cytokine secretion from macrophages and caused essential impairment of mitochondrial respiration in comparison to Alpha VLPs. Additionally, infection of primary human monocyte-derived macrophages with the SARS-CoV-2 variants confirmed the observations in VLPs. Collectively, we revealed that SARS-CoV-2 Delta had a greater impact on the inflammasome activation, cell death and mitochondrial respiration in macrophages than did the Alpha variant. Importantly, the differential response to the SARS-CoV-2 variants can influence the efficacy of therapies targeting the host's innate immunity.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Macrófagos
3.
Aging (Albany NY) ; 15(23): 13593-13607, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095608

RESUMEN

BACKGROUND: SARS-CoV-2 variants are constantly emerging with a variety of changes in the conformation of the spike protein, resulting in alterations of virus entry mechanisms. Solely omicron variants use the endosomal clathrin-mediated entry. Here, we investigate the influence of defined altered spike formations to study their impact on premature cellular senescence. METHODS: In our study, in vitro infections of SARS-CoV-2 variants delta (B.1.617.2) and omicron (B.1.1.529) were analyzed by using human primary small alveolar epithelial cells and human ex vivo lung slices. We confirmed cellular senescence in human lungs of COVID-19 patients. Hence, global gene expression patterns of infected human primary alveolar epithelial cells were identified via mRNA sequencing. RESULTS: Solely omicron variants of SARS-CoV-2 influenced the expression of cell cycle genes, highlighted by an increased p21 expression in human primary lung cells and human ex vivo lungs. Additionally, an upregulated senescence-associated secretory phenotype (SASP) was detected. Transcriptomic data indicate an increased gene expression of p16, and p38 in omicron-infected lung cells. CONCLUSIONS: Significant changes due to different SARS-CoV-2 infections in human primary alveolar epithelial cells with an overall impact on premature aging could be identified. A substantially different cellular response with an upregulation of cell cycle, inflammation- and integrin-associated pathways in omicron infected cells indicates premature cellular senescence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Senescencia Celular , Células Epiteliales Alveolares
4.
Int J Obes (Lond) ; 47(11): 1088-1099, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37587162

RESUMEN

OBJECTIVE: Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS: Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS: Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS: Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Ratones , Animales , Pulmón , Tejido Adiposo , Virus de la Influenza A/fisiología , Obesidad
5.
Diagnostics (Basel) ; 13(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37443639

RESUMEN

Rapid testing for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) of patients presenting to emergency departments (EDs) facilitates the decision for isolation on admission to hospital wards. Differences in the sensitivity of molecular assays have implications for diagnostic workflows. This study evaluated the performance of the cobas® Liat® RT-PCR, which is routinely used as the initial test for ED patients in our hospitals, compared with the eazyplex® RT-LAMP. A total of 378 oropharyngeal and nasal swabs with positive Liat® results were analysed. Residual sample aliquots were tested using NeuMoDx™, cobas® RT-PCR, and the eazyplex® assay. Patients were divided into asymptomatic (n = 157) and symptomatic (n = 221) groups according to the WHO case definition. Overall, 14% of positive Liat® results were not confirmed by RT-PCR. These samples were mainly attributed to 26.8% of asymptomatic patients, compared to 3.8% of the symptomatic group. Therefore, positive Liat® results were used to provisionally isolate patients in the ED until RT-PCR results were available. The eazyplex® assay identified 62% and 90.6% of RT-PCR-confirmed cases in asymptomatic and symptomatic patients, respectively. False-negative eazyplex® results were associated with RT-PCR Ct values > 30, and were more frequent in the asymptomatic group than in the symptomatic group (38.1% vs. 5.1%, respectively). Both the Liat® and eazyplex® assays are suitable for testing symptomatic patients. Their use in screening asymptomatic patients depends on the need to exclude any infection or identify those at high risk of transmission.

6.
Biosensors (Basel) ; 13(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37366959

RESUMEN

We introduce a magnetic bead-based sample preparation scheme for enabling the Raman spectroscopic differentiation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-positive and -negative samples. The beads were functionalized with the angiotensin-converting enzyme 2 (ACE2) receptor protein, which is used as a recognition element to selectively enrich SARS-CoV-2 on the surface of the magnetic beads. The subsequent Raman measurements directly enable discriminating SARS-CoV-2-positive and -negative samples. The proposed approach is also applicable for other virus species when the specific recognition element is exchanged. A series of Raman spectra were measured on three types of samples, namely SARS-CoV-2, Influenza A H1N1 virus and a negative control. For each sample type, eight independent replicates were considered. All of the spectra are dominated by the magnetic bead substrate and no obvious differences between the sample types are apparent. In order to address the subtle differences in the spectra, we calculated different correlation coefficients, namely the Pearson coefficient and the Normalized cross correlation coefficient. By comparing the correlation with the negative control, differentiating between SARS-CoV-2 and Influenza A virus is possible. This study provides a first step towards the detection and potential classification of different viruses with the use of conventional Raman spectroscopy.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , SARS-CoV-2/metabolismo , COVID-19/diagnóstico , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Espectrometría Raman , Fenómenos Magnéticos
7.
Aging Dis ; 14(4): 1331-1348, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163429

RESUMEN

Aging is a major risk factor associated with increased morbidity and mortality rates observed during respiratory infections. In this study, we investigated the role of influenza virus infections in the establishment of premature cellular senescence and paracrine macrophage-activated inflammation. We observed in our murine model a premature aging by the appearance of senescent cells in the lungs after 21 d of influenza A virus infection. By using murine ex vivo lung models, the influence of TNF-α on the establishment of cellular senescence was detectable. Our findings were proven by using conditioned media of infected human monocyte-derived macrophages on primary lung fibroblasts. Here, a distinct expression of senescence-associated parameters could be confirmed. Furthermore, senescent cells in the lungs strongly influenced subsequent viral infections. Our data demonstrated a higher viral load in senescent primary lung fibroblasts, indicating an intracellular effect on viral replication. Transcriptomic data revealed an increased regulation of JAK/STAT signaling in senescent IAV-infected cells accompanied with increased TRAIL expression. Additionally, senescent cells indicating low pH values, accelerating viral replication. Our study provides new insights into pathomechanisms of virus-induced cellular senescence. Hence, IAV infection induces premature senescence and subsequent infections in senescent cells lead to an increased viral replication.

8.
Aging Dis ; 14(4): 1091-1104, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163442

RESUMEN

Respiratory infections pose a significant health problem among elderly individuals, particularly during the COVID-19 pandemic. The increased mortality and morbidity rates among individuals over 65 highlight the criticality of these infections. The normal aging process in the lungs increases vulnerability to respiratory infections due to the accumulation of cellular damage and senescence. Consequently, the lung environment undergoes major changes in mechanical function and other systemic factors. This review aims to examine the influence of aging on respiratory infections from a clinical perspective by analyzing clinical studies. Additionally, the review will emphasize potential prevention and diagnostic developments to enhance therapy options available for elderly patients over 65 years of age.

11.
Viruses ; 13(10)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34696428

RESUMEN

Humoral immunity after infection or after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been attributed a key part in mitigating the further transmission of the virus. In this study, we used a commercial anti-Spike immunoglobulin G (S-IgG) assay and developed a cell culture-based neutralization assay to understand the longitudinal course of neutralizing antibodies in both SARS-CoV2 infected or vaccinated individuals. We show that even more than one year after infection, about 78% of observed study participants remained seropositive concerning S-IgG antibodies. In addition, the serum of the individuals had stable neutralization capacity in a neutralization assay against a SARS-CoV-2 patient isolate from March 2020. We also examined volunteers after either homologous BNT162b2 prime-boost vaccination or heterologous AZD1222 prime/mRNA-based booster vaccination. Both the heterologous and the homologous vaccination regimens induced higher levels of neutralizing antibodies in healthy subjects when compared to subjects after a mild infection, showing the high effectiveness of available vaccines. In addition, we could demonstrate the reliability of S-IgG levels in predicting neutralization capacity, with 94.8% of seropositive samples showing a neutralization titer of ≥10, making it a viable yet cheap and easy-to-determine surrogate parameter for neutralization capacity.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Anciano , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/inmunología , Línea Celular , ChAdOx1 nCoV-19 , Chlorocebus aethiops , Humanos , Inmunidad Humoral/inmunología , Inmunización Secundaria , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Células Vero
12.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810619

RESUMEN

Obesity is a globally increasing health problem, entailing diverse comorbidities such as infectious diseases. An obese weight status has marked effects on lung function that can be attributed to mechanical dysfunctions. Moreover, the alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation. Our review summarizes the known effects regarding pulmonary bacterial and viral infections. For this, we discuss model systems that allow mechanistic investigation of the interplay between obesity and lung infections. Overall, obesity gives rise to a higher susceptibility to infectious pathogens, but the pathogenetic process is not clearly defined. Whereas, viral infections often show a more severe course in obese patients, the same patients seem to have a survival benefit during bacterial infections. In particular, we summarize the main mechanical impairments in the pulmonary tract caused by obesity. Moreover, we outline the main secretory changes within the expanded adipose tissue mass, resulting in chronic low-grade inflammation. Finally, we connect these altered host factors to the influence of obesity on the development of lung infection by summarizing observations from clinical and experimental data.


Asunto(s)
Infecciones Bacterianas/complicaciones , Pulmón/microbiología , Pulmón/virología , Obesidad/complicaciones , Virosis/complicaciones , Adipocitos/metabolismo , Adipoquinas/metabolismo , Adiponectina , Tejido Adiposo , Animales , Antiinflamatorios/farmacología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/virología , Células Cultivadas , Comorbilidad , Femenino , Humanos , Inflamación , Leptina/fisiología , Pulmón/fisiopatología , Macrófagos/metabolismo , Masculino , Ratones , Obesidad/microbiología , Obesidad/virología , Factores de Riesgo , Virosis/microbiología , Virosis/virología
13.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637603

RESUMEN

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

14.
Microorganisms ; 8(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316261

RESUMEN

Pneumonia is the leading cause of hospitalization worldwide. Besides viruses, bacterial co-infections dramatically exacerbate infection. In general, surfactant protein-A (SP-A) represents a first line of immune defense. In this study, we analyzed whether influenza A virus (IAV) and/or Staphylococcus aureus (S. aureus) infections affect SP-A expression. To closely reflect the situation in the lung, we used a human alveolus-on-a-chip model and a murine pneumonia model. Our results show that S. aureus can reduce extracellular levels of SP-A, most likely attributed to bacterial proteases. Mono-epithelial cell culture experiments reveal that the expression of SP-A is not directly affected by IAV or S. aureus. Yet, the mRNA expression of SP-A is strongly down-regulated by TNF-α, which is highly produced by professional phagocytes in response to bacterial infection. By using the human alveolus-on-a-chip model, we show that the down-regulation of SP-A is strongly dependent on macrophages. In a murine model of pneumonia, we can confirm that S. aureus decreases SP-A levels in vivo. These findings indicate that (I) complex interactions of epithelial and immune cells induce down-regulation of SP-A expression and (II) bacterial mono- and super-infections reduce SP-A expression in the lung, which might contribute to a severe outcome of bacterial pneumonia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...