Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(4): 042501, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939025

RESUMEN

We report a precise measurement of the parity-violating (PV) asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{48}Ca. We measure A_{PV}=2668±106(stat)±40(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(q=0.8733 fm^{-1})=0.1304±0.0052(stat)±0.0020(syst) and the charge minus the weak form factor F_{ch}-F_{W}=0.0277±0.0055. The resulting neutron skin thickness R_{n}-R_{p}=0.121±0.026(exp)±0.024(model) fm is relatively thin yet consistent with many model calculations. The combined CREX and PREX results will have implications for future energy density functional calculations and on the density dependence of the symmetry energy of nuclear matter.

2.
Phys Rev Lett ; 128(14): 142501, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476486

RESUMEN

We report precision determinations of the beam-normal single spin asymmetries (A_{n}) in the elastic scattering of 0.95 and 2.18 GeV electrons off ^{12}C, ^{40}Ca, ^{48}Ca, and ^{208}Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of A_{n} for ^{40}Ca and ^{48}Ca are found to be similar to that of ^{12}C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z≤20. We also report A_{n} for ^{208}Pb at two new momentum transfers (Q^{2}) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the Z≤20 nuclei. These data confirm our basic understanding of the underlying dynamics that govern A_{n} for nuclei containing ≲50 nucleons, but point to the need for further investigation to understand the unusual A_{n} behavior discovered for scattering off ^{208}Pb.

3.
Phys Rev Lett ; 126(17): 172502, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988387

RESUMEN

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616 GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo) fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo) fm^{-3}. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.

4.
Phys Rev Lett ; 126(17): 172503, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988426

RESUMEN

Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a "density ladder" that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of ^{208}Pb (R_{skin}^{208}) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In turn, an improved value of R_{skin}^{208} has been reported recently by the PREX collaboration. Exploiting the strong correlation between R_{skin}^{208} and the slope of the symmetry energy L within a specific class of relativistic energy density functionals, we report a value of L=(106±37) MeV-which systematically overestimates current limits based on both theoretical approaches and experimental measurements. The impact of such a stiff symmetry energy on some critical neutron-star observables is also examined.

5.
Phys Rev Lett ; 126(13): 131101, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861115

RESUMEN

The first solids that form as a cooling white dwarf (WD) starts to crystallize are expected to be greatly enriched in actinides. This is because the melting points of WD matter scale as Z^{5/3} and actinides have the largest charge Z. We estimate that the solids may be so enriched in actinides that they could support a fission chain reaction. This reaction could ignite carbon burning and lead to the explosion of an isolated WD in a thermonuclear supernova (SN Ia). Our mechanism could potentially explain SN Ia with sub-Chandrasekhar ejecta masses and short delay times.

6.
Phys Rev Lett ; 124(5): 051102, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083937

RESUMEN

Dark matter could be composed of compact dark objects (CDOs). These objects may interact very weakly with normal matter and could move freely inside the Earth. A CDO moving in the inner core of the Earth will have an orbital period near 55 min and produce a time-dependent signal in a gravimeter. Data from superconducting gravimeters rule out such objects moving inside the Earth unless their mass m_{D} and or orbital radius a are very small so that m_{D}a<1.2×10^{-13}M_{⊕}R_{⊕}. Here, M_{⊕} and R_{⊕} are the mass and radius of the Earth, respectively.

7.
Phys Rev Lett ; 122(7): 071102, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848652

RESUMEN

Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency is typically in the range 3-5 kHz as determined by the central density of the star. In the best cases, LIGO may be sensitive to CDO masses greater than or of order 10^{-8} M_{⊙}.

8.
Phys Rev Lett ; 121(13): 132701, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30312063

RESUMEN

The elastic properties of neutron star crusts are relevant for a variety of currently observable or near-future electromagnetic and gravitational wave phenomena. These phenomena may depend on the elastic properties of nuclear pasta found in the inner crust. We present large-scale classical molecular dynamics simulations where we deform nuclear pasta. We simulate idealized samples of nuclear pasta and describe their breaking mechanism. We also deform nuclear pasta that is arranged into many domains, similar to what is known for the ions in neutron star crusts. Our results show that nuclear pasta may be the strongest known material, perhaps with a shear modulus of 10^{30} ergs/cm^{3} and a breaking strain greater than 0.1.

9.
Phys Rev Lett ; 120(17): 172702, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756822

RESUMEN

The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4M_{⊙} neutron star of R_{⋆}^{1.4}<13.76 km. Given the sensitivity of the neutron-skin thickness of ^{208}Pb to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about R_{skin}^{208}≲0.25 fm. However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities-likely indicative of a phase transition in the interior of neutron stars.

10.
Phys Rev Lett ; 120(18): 182701, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775364

RESUMEN

We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n+n→n+p+e^{-}+ν[over ¯]_{e} and inverse) and is consistent with the direct Urca (n→p+e^{-}+ν[over ¯]_{e} and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

11.
Phys Rev Lett ; 119(24): 242702, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29286734

RESUMEN

Muons can be created in nascent neutron stars (NSs) due to the high electron chemical potentials and the high temperatures. Because of their relatively lower abundance compared to electrons, their role has so far been ignored in numerical simulations of stellar core collapse and NS formation. However, the appearance of muons softens the NS equation of state, triggers faster NS contraction, and thus leads to higher luminosities and mean energies of the emitted neutrinos. This strengthens the postshock heating by neutrinos and can facilitate explosions by the neutrino-driven mechanism.

12.
Phys Rev Lett ; 114(3): 031102, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25658989

RESUMEN

Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Q_{imp}. Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Q_{imp}, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066405, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23005226

RESUMEN

We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , Gases em Plasma/química , Reología/métodos , Soluciones/química , Simulación por Computador , Transición de Fase
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066413, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23368065

RESUMEN

The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016401, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21867316

RESUMEN

Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

16.
Phys Rev Lett ; 104(23): 231101, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20867223

RESUMEN

We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170 keV b.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 2): 066401, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21230741

RESUMEN

Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

18.
Phys Rev Lett ; 102(19): 191102, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19518937

RESUMEN

Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(2 Pt 2): 026103, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19391802

RESUMEN

Recently, crust cooling times have been measured for neutron stars after extended outbursts. These observations are very sensitive to the thermal conductivity kappa of the crust and strongly suggest that kappa is large. We perform molecular dynamics simulations of the structure of the crust of an accreting neutron star using a complex composition that includes many impurities. The composition comes from simulations of rapid proton capture nucleosynthesis followed by electron captures. We find that the thermal conductivity is reduced by impurity scattering. In addition, we find phase separation. Some impurities with low atomic number Z are concentrated in a subregion of the simulation volume. For our composition, the solid crust must separate into regions of different compositions. This could lead to an asymmetric star with a quadrupole deformation. Observations of crust cooling can constrain impurity concentrations.

20.
Phys Rev Lett ; 102(9): 091806, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19392511

RESUMEN

We consider elastic scattering of electrons off a proton target. The parity-violating (PV) asymmetry arises at leading order in alpha due to interference of gamma and Z exchange. The radiative corrections to this leading mechanism were calculated in the literature and included in experimental analyses, except for gammaZ-box and cross-box contributions. We present here a dispersion calculation of these corrections in forward kinematics. We demonstrate that at the GeV energies of current PV experiments, such corrections are not suppressed by the small vector weak charge of the electron, as occurs in the atomic parity violation. Our results suggest that the current theoretical uncertainty in the analysis of the QWEAK experiment might be substantially underestimated, and more accurate accounts of the dispersion corrections are needed in order to interpret the PV data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...