Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Microbiol ; 72(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37929930

RESUMEN

Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.


Asunto(s)
Parasitosis Intestinales , Nippostrongylus , Animales
2.
Front Immunol ; 14: 1170807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251384

RESUMEN

Helminth-induced eosinophils accumulate around the parasite at the site of infection, or in parasite-damaged tissues well after the helminth has left the site. The role of helminth-elicited eosinophils in mediating parasite control is complex. While they may contribute to direct parasite-killing and tissue repair, their involvement in long-term immunopathogenesis is a concern. In allergic Siglec-FhiCD101hi, eosinophils are associated with pathology. Research has not shown if equivalent subpopulations of eosinophils are a feature of helminth infection. In this study, we demonstrate that lung migration of rodent hookworm Nippostrongylus brasiliensis (Nb) results in a long-term expansion of distinct Siglec-FhiCD101hi eosinophil subpopulations. Nb-elevated eosinophil populations in the bone marrow and circulation did not present this phenotype. Siglec-FhiCD101hi lung eosinophils exhibited an activated morphology including nuclei hyper-segmentation and cytoplasm degranulation. Recruitment of ST2+ ILC2s and not CD4+ T cells to the lungs was associated with the expansion of Siglec-FhiCD101hi eosinophils. This data identifies a morphologically distinct and persistent subset of Siglec-FhiCD101hi lung eosinophils induced following Nb infection. These eosinophils may contribute to long-term pathology following helminth infection.


Asunto(s)
Eosinófilos , Infecciones por Uncinaria , Animales , Ratones , Ancylostomatoidea , Inmunidad Innata , Pulmón/parasitología , Linfocitos , Nippostrongylus , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
3.
Front Immunol ; 13: 1009968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330509

RESUMEN

Helminth infection-driven changes to immunity in the female reproductive tract (FRT) is an immune axis that is currently understudied but can have major implications for the control of FRT infections. Here we address how human hookworm infection associates with vaginal immune profile and risk of Human papillomavirus (HPV) infection. Stool, blood, cervical swabs and vaginal flushes were collected from women from the Central region of Togo to screen for hookworms (Ancylostoma duodenale) and high carcinogenic risk HPV types, via Kato Katz and PCR, respectively. Cytokine, chemokine and immunoglobulin levels were analysed in cervicovaginal lavages and plasma samples. A pronounced mixed Type 1/Type 2 immune response was detected in the vaginal fluids of women with hookworm infection and this immune signature was a notable feature in hookworm-HPV co-infected women. Moreover, hookworm infection is positively associated with increased risk and load of HPV infection. These findings highlight helminth infection as a significant risk factor for acquiring a sexually transmitted viral infection and potentially raising the risk of subsequent pathology.


Asunto(s)
Helmintiasis , Infecciones por Uncinaria , Infecciones por Papillomavirus , Infecciones del Sistema Genital , Animales , Femenino , Humanos , Infecciones por Papillomavirus/complicaciones , Vagina , Ancylostomatoidea
4.
Front Immunol ; 13: 893844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711456

RESUMEN

Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.


Asunto(s)
Eosinofilia , Neumonía , Acetilcolina/farmacología , Acetilcolinesterasa/metabolismo , Animales , Inmunidad Innata , Inflamación/metabolismo , Interleucina-33/metabolismo , Pulmón , Linfocitos , Ratones
5.
Cell Host Microbe ; 30(1): 1-2, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35026130

RESUMEN

In recently published work, Hu, Zhang, and colleagues identify SPRR2A as a novel intestinal antimicrobial protein (AMP) that targets Gram-positive bacteria (Hu et al., 2021). Unexpectedly, the authors show that SPRR2A is induced by helminth-elicited type 2 immunity to restrict pathogenic bacteria translocation across the helminth-infection-damaged epithelium.


Asunto(s)
Helmintiasis , Helmintos , Animales
6.
J Allergy Clin Immunol ; 149(6): 1960-1969, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34996616

RESUMEN

BACKGROUND: Ascaris infections, with a worldwide prevalence above 10%, can cause respiratory pathology. However, long-term effects on lung function in humans are largely unknown. OBJECTIVE: We investigated the associations of Ascaris exposure with lung function, asthma, and DNA methylation. METHODS: Serum Ascaris IgG antibodies were measured in 671 adults aged 18 to 47 years (46% women) from Aarhus, Bergen, and Tartu RHINESSA study centers. Seropositivity was defined as IgG above the 90th percentile. Linear and logistic regressions were used to analyze Ascaris seropositivity as associated with lung function and asthma, adjusted for age, height, and smoking and clustered by center. DNA methylation in blood was profiled by a commercial methylation assay. RESULTS: Ascaris seropositivity was associated with lower FEV1 (-247 mL; 95% CI, -460, -34) and higher odds for asthma (adjusted odds ratio, 5.84; 95% CI, 1.67, 20.37) among men but not women, also after further adjusting for house dust mite sensitivity, consistent across study centers. At a genome-wide level, Ascaris exposure was associated with 23 differentially methylated sites in men and 3 in women. We identified hypermethylation of the MYBPC1 gene, which can regulate airway muscle contraction. We also identified genes linked to asthma pathogenesis such as CRHR1 and GRK1, as well as a differentially methylated region in the PRSS22 gene linked to nematode infection. CONCLUSION: Ascaris exposure was associated with substantially lower lung function and increased asthma risk among men. Seropositive participants had sex-specific differences in DNA methylation compared to the unexposed, thus suggesting that exposure may lead to sex-specific epigenetic changes associated with lung pathology.


Asunto(s)
Ascaris , Asma , Adulto , Animales , Ascaris/genética , Asma/epidemiología , Asma/genética , Metilación de ADN , Femenino , Humanos , Inmunoglobulina G/genética , Pulmón , Masculino
7.
Cell Host Microbe ; 29(4): 579-593.e5, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33857419

RESUMEN

How helminths influence the pathogenesis of sexually transmitted viral infections is not comprehensively understood. Here, we show that an acute helminth infection (Nippostrongylus brasiliensis [Nb]) induced a type 2 immune profile in the female genital tract (FGT). This leads to heightened epithelial ulceration and pathology in subsequent herpes simplex virus (HSV)-2 infection. This was IL-5-dependent but IL-4 receptor alpha (Il4ra) independent, associated with increased FGT eosinophils, raised vaginal IL-33, and enhanced epithelial necrosis. Vaginal eosinophil accumulation was promoted by IL-33 induction following targeted vaginal epithelium damage from a papain challenge. Inhibition of IL-33 protected against Nb-exacerbated HSV-2 pathology. Eosinophil depletion reduced IL-33 release and HSV-2 ulceration in Nb-infected mice. These findings demonstrate that Nb-initiated FGT eosinophil recruitment promotes an eosinophil, IL-33, and IL-5 inflammatory circuit that enhances vaginal epithelial necrosis and pathology following HSV-2 infection. These findings identify a mechanistic framework as to how helminth infections can exacerbate viral-induced vaginal pathology.


Asunto(s)
Eosinófilos/inmunología , Helmintiasis/inmunología , Herpes Simple/inmunología , Receptores de Superficie Celular/inmunología , Vagina/inmunología , Enfermedades Vaginales/inmunología , Animales , Eosinófilos/patología , Femenino , Helmintiasis/complicaciones , Helmintos , Herpes Simple/complicaciones , Herpes Simple/patología , Herpes Simple/virología , Herpesvirus Humano 2/inmunología , Inmunidad , Interleucina-33 , Interleucina-5 , Necrosis , Nippostrongylus , Receptores de Superficie Celular/genética , Vagina/patología , Vagina/virología , Enfermedades Vaginales/parasitología , Enfermedades Vaginales/virología
8.
Sci Immunol ; 6(57)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674321

RESUMEN

Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.


Asunto(s)
Acetilcolina/biosíntesis , Helmintiasis/inmunología , Helmintos/inmunología , Inmunidad Innata , Inmunidad Mucosa , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Expresión Génica , Helmintiasis/parasitología , Interacciones Huésped-Parásitos/inmunología , Inmunohistoquímica , Inmunofenotipificación , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Especificidad de Órganos/inmunología
10.
Parasite Immunol ; 42(7): e12728, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32394439

RESUMEN

Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.


Asunto(s)
Ascariasis/inmunología , Ascaris suum/inmunología , Quimiocina CCL24/metabolismo , Eosinófilos/inmunología , Macrófagos/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Formación de Anticuerpos , Ascaris lumbricoides/inmunología , Humanos , Sueros Inmunes/farmacología , Larva/inmunología , Recuento de Leucocitos , Ratones , Porcinos , Enfermedades de los Porcinos/inmunología , Vacunas/inmunología
11.
Sci Adv ; 5(5): eaav3058, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31236458

RESUMEN

Maternal immune transfer is the most significant source of protection from early-life infection, but whether maternal transfer of immunity by nursing permanently alters offspring immunity is poorly understood. Here, we identify maternal immune imprinting of offspring nursed by mothers who had a pre-conception helminth infection. Nursing of pups by helminth-exposed mothers transferred protective cellular immunity to these offspring against helminth infection. Enhanced control of infection was not dependent on maternal antibody. Protection associated with systemic development of protective type 2 immunity in T helper 2 (TH2) impaired IL-4Rα-/- offspring. This maternally acquired immunity was maintained into maturity and required transfer (via nursing) to the offspring of maternally derived TH2-competent CD4 T cells. Our data therefore reveal that maternal exposure to a globally prevalent source of infection before pregnancy provides long-term nursing-acquired immune benefits to offspring mediated by maternally derived pathogen-experienced lymphocytes.


Asunto(s)
Animales Lactantes/inmunología , Inmunidad Celular , Inmunidad Materno-Adquirida , Infecciones por Strongylida/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Linfocitos B/inmunología , Linfocitos B/parasitología , Linfocitos T CD4-Positivos/inmunología , Femenino , Lactancia/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nippostrongylus/inmunología , Nippostrongylus/patogenicidad , Embarazo , Receptores de Superficie Celular/genética , Infecciones por Strongylida/transmisión , Células Th2/inmunología
12.
Cell Rep ; 27(9): 2649-2664.e5, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141689

RESUMEN

Lung inflammation induced by silica impairs host control of tuberculosis, yet the underlying mechanism remains unclear. Here, we show that silica-driven exacerbation of M. tuberculosis infection associates with raised type 2 immunity. Silica increases pulmonary Th2 cell and M2 macrophage responses, while reducing type 1 immunity after M. tuberculosis infection. Silica induces lung damage that prompts extracellular self-DNA release and activates STING. This STING priming potentiates M. tuberculosis DNA sensing by and activation of cGAS/STING, which triggers enhanced type I interferon (IFNI) response and type 2 immunity. cGAS-, STING-, and IFNAR-deficient mice are resistant to silica-induced exacerbation of M. tuberculosis infection. Thus, silica-induced self-DNA primes the host response to M. tuberculosis-derived nucleic acids, which increases type 2 immunity while reducing type 1 immunity, crucial for controlling M. tuberculosis infection. These data show how cGAS/STING pathway activation, at the crossroads of sterile inflammation and infection, may affect the host response to pathogens such as M. tuberculosis.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/fisiología , Mycobacterium tuberculosis/inmunología , Neumonía/complicaciones , Dióxido de Silicio/toxicidad , Tuberculosis/etiología , Animales , Células Dendríticas , Factor 3 Regulador del Interferón/fisiología , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/fisiología , Neumonía/inducido químicamente , Receptor de Interferón alfa y beta/fisiología , Transducción de Señal , Tuberculosis/metabolismo , Tuberculosis/patología
13.
Nat Commun ; 9(1): 4516, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375396

RESUMEN

Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Herpesviridae/inmunología , Memoria Inmunológica/inmunología , Interleucina-4/inmunología , Infecciones del Sistema Respiratorio/inmunología , Esquistosomiasis mansoni/inmunología , Infecciones Tumorales por Virus/inmunología , Animales , Línea Celular , Cricetinae , Ratones , Rhadinovirus , Schistosoma mansoni
14.
Front Immunol ; 9: 1529, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013573

RESUMEN

BACKGROUND: It is unclear whether antibodies can prevent Mycobacterium tuberculosis (Mtb) infection. In this study, we examined the relationship between total plasma IgG levels, IgG elicited by childhood vaccines and soil-transmitted helminths, and Mtb infection prevalence, defined by positive QuantiFERON (QFT) test. METHODS: We studied 100 Mtb uninfected infants, aged 4-6 months. Ten infants (10%) converted to positive QFT test (QFT+) within 2 years of follow-up for Mtb infection. Antibody responses in plasma samples acquired at baseline and tuberculosis investigation were analyzed by enzyme-linked immunosorbent assay and ImmunoCAP® assay. RESULTS: QFT- infants displayed a significant increase in total IgG titers when re-tested, compared to IgG titers at baseline, which was not observed in QFT+ infants. Bacille Calmette-Guérin (BCG) vaccine-specific IgG2 and live-attenuated measles vaccine-specific IgG were raised in QFT- infants, and infants who acquired an Mtb infection did not appear to launch a BCG-specific IgG2 response. IgG titers against the endemic helminth Ascaris lumbricoides increased from baseline to QFT re-testing in all infants. CONCLUSION: These data show raised IgG associates with a QFT-status. Importantly, this effect was also associated with a trend showing raised IgG titers to BCG and measles vaccine. Our data suggest a possible protective association between raised antibody titers and acquisition of Mtb infection, potentially mediated by exposure to antigens both related and unrelated to Mtb.

15.
PLoS Pathog ; 14(7): e1007182, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30048550

RESUMEN

Future HIV vaccines are expected to induce effective Th1 cell-mediated and Env-specific antibody responses that are necessary to offer protective immunity to HIV infection. However, HIV infections are highly prevalent in helminth endemic areas. Helminth infections induce polarised Th2 responses that may impair HIV vaccine-generated Th1 responses. In this study, we tested if Schistosoma mansoni (Sm) infection altered immune responses to SAAVI candidate HIV vaccines (DNA and MVA) and an HIV-1 gp140 Env protein vaccine (gp140) and whether parasite elimination by chemotherapy or the presence of Sm eggs (SmE) in the absence of active infection influenced the immunogenicity of these vaccines. In addition, we evaluated helminth-associated pathology in DNA and MVA vaccination groups. Mice were chronically infected with Sm and vaccinated with DNA+MVA in a prime+boost combination or MVA+gp140 in concurrent combination regimens. Some Sm-infected mice were treated with praziquantel (PZQ) prior to vaccinations. Other mice were inoculated with SmE before receiving vaccinations. Unvaccinated mice without Sm infection or SmE inoculation served as controls. HIV responses were evaluated in the blood and spleen while Sm-associated pathology was evaluated in the livers. Sm-infected mice had significantly lower magnitudes of HIV-specific cellular responses after vaccination with DNA+MVA or MVA+gp140 compared to uninfected control mice. Similarly, gp140 Env-specific antibody responses were significantly lower in vaccinated Sm-infected mice compared to controls. Treatment with PZQ partially restored cellular but not humoral immune responses in vaccinated Sm-infected mice. Gp140 Env-specific antibody responses were attenuated in mice that were inoculated with SmE compared to controls. Lastly, Sm-infected mice that were vaccinated with DNA+MVA displayed exacerbated liver pathology as indicated by larger granulomas and increased hepatosplenomegaly when compared with unvaccinated Sm-infected mice. This study shows that chronic schistosomiasis attenuates both HIV-specific T-cell and antibody responses and parasite elimination by chemotherapy may partially restore cellular but not antibody immunity, with additional data suggesting that the presence of SmE retained in the tissues after antihelminthic therapy contributes to lack of full immune restoration. Our data further suggest that helminthiasis may compromise HIV vaccine safety. Overall, these findings suggested a potential negative impact on future HIV vaccinations by helminthiasis in endemic areas.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/patología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Modelos Animales de Enfermedad , Femenino , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas Virales/inmunología
17.
J Innate Immun ; 9(1): 3-11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27794581

RESUMEN

Surfactant proteins A (SP-A) and D (SP-D) are established as essential components of our innate immune system for protecting the lung from pathogens and allergens. They essentially exert their protective functions by regulating pulmonary homeostasis. Both proteins are however widely expressed throughout the body, including the female reproductive tract, urinary tract, gastrointestinal tract, the eye, ear, nasal compartment, central nervous system, the coronary artery and the skin. The functions of SP-A and SP-D at these sites are a relatively underinvestigated area, but it is emerging that both SP-A and SP-D contribute significantly to the regulation of inflammation and protection from infection at these sites. This review presents our current understanding of the roles of SP-A and SP-D in non-pulmonary sites.


Asunto(s)
Infecciones/inmunología , Inflamación/inmunología , Pulmón/fisiología , Proteína A Asociada a Surfactante Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Animales , Homeostasis , Humanos , Inmunidad Innata
19.
Trends Parasitol ; 32(7): 512-514, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27129878

RESUMEN

Resistin-like molecule (RELM) proteins are essential for immunity to helminths. Recently, Chen and collaborators identified a dominant role for RELMα over RELMß in host immunity to Nippostrongylus brasiliensis using a double knockout system. The study highlighted how important and yet divergent the contributions of these proteins are in the control of helminth infections.


Asunto(s)
Helmintiasis/inmunología , Interacciones Huésped-Parásitos/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Helmintiasis/parasitología , Helmintos , Humanos , Ratones
20.
PLoS Pathog ; 12(2): e1005461, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26900854

RESUMEN

Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths.


Asunto(s)
Células Epiteliales/parasitología , Pulmón/parasitología , Macrófagos Alveolares/parasitología , Nippostrongylus/inmunología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Infecciones por Strongylida/parasitología , Animales , Células Epiteliales/inmunología , Inmunidad Innata/inmunología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Ratones , Proteína D Asociada a Surfactante Pulmonar/deficiencia , Infecciones por Strongylida/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...