Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1250, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082099

RESUMEN

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
2.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34919820

RESUMEN

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Asunto(s)
Mamíferos/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Línea Celular , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Humanos , Mamíferos/inmunología , Unión Proteica/genética , Unión Proteica/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196304

RESUMEN

Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galß1-4GalNAcß), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Proteínas Virales/inmunología , Adulto , Factores de Edad , Anciano , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Estudios de Cohortes , Reacciones Cruzadas , Huevos/análisis , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Persona de Mediana Edad , Polisacáridos/inmunología , Vacunación
4.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947773

RESUMEN

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Afinidad de Anticuerpos , COVID-19/prevención & control , Epítopos/inmunología , Humanos , Evasión Inmune , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Dominios Proteicos , Proteómica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
5.
bioRxiv ; 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33398269

RESUMEN

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

6.
J Struct Biol ; 209(1): 107416, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726096

RESUMEN

Single particle analysis for structure determination in cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as current reconstruction algorithms are not designed to handle heterogeneous mixtures of structures from many distinct macromolecular complexes. We extend on long established methods and demonstrate that relating two-dimensional projection images by their common lines in a graphical framework is sufficient for partitioning distinct protein and multiprotein complexes within the same data set. The feasibility of this approach is first demonstrated on a large set of synthetic reprojections from 35 unique macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and use existing methods to solve multiple three-dimensional structures ab initio. Incorporating methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will alleviate the need for stringent purification and pave the way toward investigation of samples containing many unique structures.


Asunto(s)
Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares/ultraestructura , Complejos Multiproteicos/ultraestructura , Imagenología Tridimensional , Sustancias Macromoleculares/química , Complejos Multiproteicos/química
7.
Cell Host Microbe ; 25(3): 367-376.e5, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30795981

RESUMEN

Humans are repeatedly exposed to influenza virus via infections and vaccinations. Understanding how multiple exposures and pre-existing immunity impact antibody responses is essential for vaccine development. Given the recent prevalence of influenza H1N1 A/California/7/2009 (CA09), we examined the clonal composition and dynamics of CA09 hemagglutinin (HA)-reactive IgG repertoire over 5 years in a donor with multiple influenza exposures. The anti-CA09 HA polyclonal response in this donor comprised 24 persistent antibody clonotypes, accounting for 72.6% ± 10.0% of the anti-CA09 HA repertoire over 5 years. These persistent antibodies displayed higher somatic hypermutation relative to transient serum antibodies detected at one time point. Additionally, persistent antibodies predominantly demonstrated cross-reactivity and potent neutralization toward a phylogenetically distant H5N1 A/Vietnam/1203/2004 (VT04) strain, a feature correlated with HA stem recognition. This analysis reveals how "serological imprinting" impacts responses to influenza and suggests that once elicited, cross-reactive antibodies targeting the HA stem can persist for years.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Orthomyxoviridae/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Persona de Mediana Edad , Suero/inmunología , Suiza
8.
Cancer Immunol Immunother ; 67(5): 729-738, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29427082

RESUMEN

A better understanding of antitumor immune responses is the key to advancing the field of cancer immunotherapy. Endogenous immunity in cancer patients, such as circulating anticancer antibodies or tumor-reactive B cells, has been historically yet incompletely described. Here, we demonstrate that tumor-draining (sentinel) lymph node (SN) is a rich source for tumor-reactive B cells that give rise to systemic IgG anticancer antibodies circulating in the bloodstream of breast cancer patients. Using a synergistic combination of high-throughput B-cell sequencing and quantitative immunoproteomics, we describe the prospective identification of tumor-reactive SN B cells (based on clonal frequency) and also demonstrate an unequivocal link between affinity-matured expanded B-cell clones in the SN and antitumor IgG in the blood. This technology could facilitate the discovery of antitumor antibody therapeutics and conceivably identify novel tumor antigens. Lastly, these findings highlight the unique and specialized niche the SN can fill in the advancement of cancer immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/inmunología , Linfocitos B/inmunología , Neoplasias de la Mama/inmunología , Células Clonales/inmunología , Inmunoglobulina G/inmunología , Ganglio Linfático Centinela/inmunología , Secuencia de Aminoácidos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Cultivadas , Femenino , Humanos , Homología de Secuencia
9.
Anal Chem ; 89(12): 6498-6504, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28517930

RESUMEN

Mass spectrometry (MS) has emerged as a powerful tool within the growing field of immunoproteomics, which aims to understand antibody-mediated immunity at the molecular-level based on the direct determination of serological antibody repertoire. To date, these methods have relied on the use of high-resolution bottom-up proteomic strategies that require effective sampling and characterization of low abundance peptides derived from the antigen-binding domains of polyclonal antibody mixtures. Herein, we describe a method that uses restricted Lys-C enzymatic digestion to increase the average mass of proteolytic IgG peptides (≥4.5 kDa) and produce peptides which uniquely derive from single antibody species. This enhances the capacity to discriminate between very similar antibodies present within polyclonal mixtures. Furthermore, our use of 193-nm ultraviolet photodissociation (UVPD) improves spectral coverage of the antibody sequence relative to conventional collision- and electron-based fragmentation methods. We apply these methods to both a monoclonal and an antibody mixture. By identifying from a database search of approximately 15 000 antibody sequences those which compose the mixture, we demonstrate the analytical potential of middle-down UVPD for MS-based serological repertoire analysis.


Asunto(s)
Inmunoglobulina G/análisis , Inmunoproteínas/análisis , Proteoma/análisis , Proteómica/métodos , Rayos Ultravioleta , Humanos , Espectrometría de Masas , Procesos Fotoquímicos
10.
Anal Chem ; 89(6): 3747-3753, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28234449

RESUMEN

We describe a strategy for de novo peptide sequencing based on matched pairs of tandem mass spectra (MS/MS) obtained by collision induced dissociation (CID) and 351 nm ultraviolet photodissociation (UVPD). Each precursor ion is isolated twice with the mass spectrometer switching between CID and UVPD activation modes to obtain a complementary MS/MS pair. To interpret these paired spectra, we modified the UVnovo de novo sequencing software to automatically learn from and interpret fragmentation spectra, provided a representative set of training data. This machine learning procedure, using random forests, synthesizes information from one or multiple complementary spectra, such as the CID/UVPD pairs, into peptide fragmentation site predictions. In doing so, the burden of fragmentation model definition shifts from programmer to machine and opens up the model parameter space for inclusion of nonobvious features and interactions. This spectral synthesis also serves to transform distinct types of spectra into a common representation for subsequent activation-independent processing steps. Then, independent from precursor activation constraints, UVnovo's de novo sequencing procedure generates and scores sequence candidates for each precursor. We demonstrate the combined experimental and computational approach for de novo sequencing using whole cell E. coli lysate. In benchmarks on the CID/UVPD data, UVnovo assigned correct full-length sequences to 83% of the spectral pairs of doubly charged ions with high-confidence database identifications. Considering only top-ranked de novo predictions, 70% of the pairs were deciphered correctly. This de novo sequencing performance exceeds that of PEAKS and PepNovo on the CID spectra and that of UVnovo on CID or UVPD spectra alone. As presented here, the methods for paired CID/UVPD spectral acquisition and interpretation constitute a powerful workflow for high-throughput and accurate de novo peptide sequencing.


Asunto(s)
Péptidos/química , Análisis de Secuencia de Proteína , Procesos Fotoquímicos , Espectrometría de Masas en Tándem , Rayos Ultravioleta
11.
Nat Med ; 22(12): 1456-1464, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27820605

RESUMEN

Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ∼60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Orthomyxoviridae/inmunología , Adulto , Animales , Linfocitos B/inmunología , Cromatografía Liquida , Reacciones Cruzadas , Epítopos , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Masculino , Ratones , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos B/genética , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Adulto Joven
12.
Anal Chem ; 88(7): 3990-7, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26938041

RESUMEN

De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide's amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS(3)) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the "antisymmetric path problem" and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an Escherichia coli lysate at high confidence.


Asunto(s)
Algoritmos , Espectrometría de Masas , Péptidos/química , Rayos Ultravioleta , Secuencia de Aminoácidos , Escherichia coli/química , Iones/química , Procesos Fotoquímicos , Análisis de Secuencia de Proteína
13.
Curr Opin Immunol ; 35: 89-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26172290

RESUMEN

The ensemble of antibodies found in serum and secretions represents the key adaptive component of B-cell mediated humoral immunity. The antibody repertoire is shaped by the historical record of exposure to exogenous factors such as pathogens and vaccines, as well as by endogenous host-intrinsic factors such as genetics, self-antigens, and age. Thanks to very recent technology advancements it is now becoming possible to identify and quantify the individual antibodies comprising the serological repertoire. In parallel, the advent of high throughput methods for antigen and immunosignature discovery opens up unprecedented opportunities to transform our understanding of numerous key questions in adaptive humoral immunity, including the nature and dynamics of serological memory, the role of polyspecific antibodies in health and disease and how protective responses to infections or vaccine challenge arise. Additionally, these technologies also hold great promise for therapeutic antibody and biomarker discovery in a variety of settings.


Asunto(s)
Anticuerpos/sangre , Antígenos/inmunología , Serología/métodos , Animales , Diversidad de Anticuerpos , Antígenos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad Humoral , Patología Molecular , Proteómica
14.
Curr Opin Chem Biol ; 24: 112-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25461729

RESUMEN

Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).


Asunto(s)
Anticuerpos/análisis , Anticuerpos/sangre , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espectrometría de Masas/métodos , Anticuerpos/genética , Anticuerpos/inmunología , Linfocitos B/química , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Proteómica/métodos
15.
Anal Chem ; 86(10): 4758-66, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24684310

RESUMEN

Characterizing the in vivo dynamics of the polyclonal antibody repertoire in serum, such as that which might arise in response to stimulation with an antigen, is difficult due to the presence of many highly similar immunoglobulin proteins, each specified by distinct B lymphocytes. These challenges have precluded the use of conventional mass spectrometry for antibody identification based on peptide mass spectral matches to a genomic reference database. Recently, progress has been made using bottom-up analysis of serum antibodies by nanoflow liquid chromatography/high-resolution tandem mass spectrometry combined with a sample-specific antibody sequence database generated by high-throughput sequencing of individual B cell immunoglobulin variable domains (V genes). Here, we describe how intrinsic features of antibody primary structure, most notably the interspersed segments of variable and conserved amino acid sequences, generate recurring patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between "true" and "false" identifications. These findings highlight important caveats associated with the use of standard database search and error-modeling methods with nonstandard data sets and custom sequence databases.


Asunto(s)
Anticuerpos Monoclonales/sangre , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Reacciones Antígeno-Anticuerpo , Cromatografía Líquida de Alta Presión , Cisteína/química , Humanos , Datos de Secuencia Molecular , Conejos , Espectrometría de Masas en Tándem
16.
Proc Natl Acad Sci U S A ; 111(6): 2259-64, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469811

RESUMEN

Most vaccines confer protection via the elicitation of serum antibodies, yet more than 100 y after the discovery of antibodies, the molecular composition of the human serum antibody repertoire to an antigen remains unknown. Using high-resolution liquid chromatography tandem MS proteomic analyses of serum antibodies coupled with next-generation sequencing of the V gene repertoire in peripheral B cells, we have delineated the human serum IgG and B-cell receptor repertoires following tetanus toxoid (TT) booster vaccination. We show that the TT(+) serum IgG repertoire comprises ∼100 antibody clonotypes, with three clonotypes accounting for >40% of the response. All 13 recombinant IgGs examined bound to vaccine antigen with Kd ∼ 10(-8)-10(-10) M. Five of 13 IgGs recognized the same linear epitope on TT, occluding the binding site used by the toxin for cell entry, suggesting a possible explanation for the mechanism of protection conferred by the vaccine. Importantly, only a small fraction (<5%) of peripheral blood plasmablast clonotypes (CD3(-)CD14(-)CD19(+)CD27(++)CD38(++)CD20(-)TT(+)) at the peak of the response (day 7), and an even smaller fraction of memory B cells, were found to encode antibodies that could be detected in the serological memory response 9 mo postvaccination. This suggests that only a small fraction of responding peripheral B cells give rise to the bone marrow long-lived plasma cells responsible for the production of biologically relevant amounts of vaccine-specific antibodies (near or above the Kd). Collectively, our results reveal the nature and dynamics of the serological response to vaccination with direct implications for vaccine design and evaluation.


Asunto(s)
Anticuerpos Antibacterianos/biosíntesis , Toxoide Tetánico/administración & dosificación , Secuencia de Aminoácidos , Anticuerpos Antibacterianos/química , Linfocitos B/inmunología , Cromatografía Liquida , Humanos , Inmunofenotipificación , Datos de Secuencia Molecular , Espectrometría de Masas en Tándem
17.
Mol Cell Proteomics ; 12(9): 2604-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23695934

RESUMEN

The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS(1) and MS(2) data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches.


Asunto(s)
Cromatografía Liquida/métodos , Bases de Datos de Proteínas , Ensayos Analíticos de Alto Rendimiento , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Rayos Ultravioleta , Algoritmos , Aniones , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Halobacterium/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Péptidos/metabolismo , Proteoma/química , Curva ROC , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína
18.
Proc Natl Acad Sci U S A ; 110(8): 2993-8, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382245

RESUMEN

We have developed and validated a methodology for determining the antibody composition of the polyclonal serum response after immunization. Pepsin-digested serum IgGs were subjected to standard antigen-affinity chromatography, and resulting elution, wash, and flow-through fractions were analyzed by bottom-up, liquid chromatography-high-resolution tandem mass spectrometry. Identification of individual monoclonal antibodies required the generation of a database of IgG variable gene (V-gene) sequences constructed by NextGen sequencing of mature B cells. Antibody V-gene sequences are characterized by short complementarity determining regions (CDRs) of high diversity adjacent to framework regions shared across thousands of IgGs, greatly complicating the identification of antigen-specific IgGs from proteomically observed peptides. By mapping peptides marking unique V(H) CDRH3 sequences, we identified a set of V-genes heavily enriched in the affinity chromatography elution, constituting the serum polyclonal response. After booster immunization in a rabbit, we find that the antigen-specific serum immune response is oligoclonal, comprising antibodies encoding 34 different CDRH3s that group into 30 distinct antibody V(H) clonotypes. Of these 34 CDRH3s, 12 account for ∼60% of the antigen-specific CDRH3 peptide mass spectral counts. For comparison, antibodies with 18 different CDRH3s (12 clonotypes) were represented in the antigen-specific IgG fraction from an unimmunized rabbit that fortuitously displayed a moderate titer for BSA. Proteomically identified antibodies were synthesized and shown to display subnanomolar affinities. The ability to deconvolute the polyclonal serum response is likely to be of key importance for analyzing antibody responses after vaccination and for more completely understanding adaptive immune responses in health and disease.


Asunto(s)
Anticuerpos Monoclonales/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Cromatografía de Afinidad , Regiones Determinantes de Complementariedad , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Espectrometría de Masas , Datos de Secuencia Molecular , Proteómica , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...