Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci ; 239: 117053, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31733316

RESUMEN

AIMS: Intracardiac injection of recombinant EphrinA1-Fc immediately following coronary artery ligation in mice reduces infarct size in both reperfused and non-reperfused myocardium, but the cellular alterations behind this phenomenon remain unknown. MAIN METHODS: Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion (30minI/24hrsR) injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. KEY FINDINGS: At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. With respect to bioenergetics, loss of respiratory function induced by I/R was prevented by EphrinA1-Fc. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. SIGNIFICANCE: Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.


Asunto(s)
Efrina-A1/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Técnicas Electrofisiológicas Cardíacas/métodos , Metabolismo Energético , Efrina-A1/administración & dosificación , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
2.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909376

RESUMEN

Myocardial tissue damage that occurs during an ischemic event leads to a spiraling deterioration of cardiac muscle structural and functional integrity. Reperfusion is the only known efficacious strategy and is the most commonly used treatment to reduce injury and prevent remodeling. However, timing is critical, and the procedure is not always feasible for a variety of reasons. The complex molecular basis for cardioprotection has been studied for decades but formulation of a viable therapeutic that can significantly attenuate myocardial injury remains elusive. In this review, we address barriers to the development of a fruitful approach that will substantially improve the prognosis of those suffering from this widespread and largely unmitigated disease. Furthermore, we proffer that ephrinA1, a candidate molecule that satisfies many of the important criteria discussed, possesses robust potential to overcome these hurdles and thus offers protection that surpasses the limitations currently observed.


Asunto(s)
Infarto del Miocardio/terapia , Animales , Cardiotónicos , Terapia Combinada , Manejo de la Enfermedad , Efrina-A1/genética , Efrina-A1/metabolismo , Efrina-A1/uso terapéutico , Efrina-A1/ultraestructura , Humanos , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Fragmentos Fc de Inmunoglobulinas/ultraestructura , Ligandos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes de Fusión/ultraestructura , Investigación Biomédica Traslacional , Resultado del Tratamiento
3.
JCI Insight ; 4(4)2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668551

RESUMEN

Evidence has emerged that the failing heart increases utilization of ketone bodies. We sought to determine whether this fuel shift is adaptive. Mice rendered incapable of oxidizing the ketone body 3-hydroxybutyrate (3OHB) in the heart exhibited worsened heart failure in response to fasting or a pressure overload/ischemic insult compared with WT controls. Increased delivery of 3OHB ameliorated pathologic cardiac remodeling and dysfunction in mice and in a canine pacing model of progressive heart failure. 3OHB was shown to enhance bioenergetic thermodynamics of isolated mitochondria in the context of limiting levels of fatty acids. These results indicate that the heart utilizes 3OHB as a metabolic stress defense and suggest that strategies aimed at increasing ketone delivery to the heart could prove useful in the treatment of heart failure.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/patología , Humanos , Hidroxibutirato Deshidrogenasa/genética , Hidroxibutirato Deshidrogenasa/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/citología , Miocardio/patología , Oxidación-Reducción , Estrés Fisiológico , Termodinámica , Remodelación Ventricular
4.
JCI Insight ; 2(1)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26998524

RESUMEN

Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II-driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.

5.
Circulation ; 133(8): 698-705, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26819376

RESUMEN

BACKGROUND: Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS: Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of ß-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS: These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.


Asunto(s)
Dieta Cetogénica/métodos , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Cuerpos Cetónicos/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/dietoterapia , Ratones , Ratones Endogámicos C57BL
6.
Circ Res ; 116(11): 1820-34, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25999422

RESUMEN

The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart.


Asunto(s)
Metabolismo Energético/genética , Redes Reguladoras de Genes , Genoma Mitocondrial/genética , Mitocondrias Cardíacas/genética , Animales , Replicación del ADN , ADN Mitocondrial/genética , Regulación de la Expresión Génica , Humanos , Mitocondrias Cardíacas/metabolismo , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA