Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cannabis Cannabinoid Res ; 8(3): 510-526, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446129

RESUMEN

Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.


Asunto(s)
Cannabinoides , Peritonitis , Ratas , Masculino , Animales , Receptores de Cannabinoides , Roedores/metabolismo , Interleucina-6 , Ratas Sprague-Dawley , Endocannabinoides/metabolismo , Peritonitis/genética , Inflamación , ARN Mensajero/genética
2.
Cannabis Cannabinoid Res ; 4(1): 33-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31032421

RESUMEN

Chronic and acute agonism as well as acute antagonism of CB1 receptors reveal modulation of learning and memory during stable performance of a delayed-nonmatch-to-sample (DNMS) memory task. However, it remains unclear how chronic blockade of the CB1 receptor alters acquisition of the behavioral task. We examined the effects of chronic rimonabant exposure during DNMS task acquisition to determine if blockade of the CB1 receptor with the antagonist rimonabant enhanced acquisition of operant task. Long-Evans rats, trained in the DNMS task before imposition of the trial delay, were surgically implanted with osmotic mini pumps to administer rimonabant (1.0 mg/kg/day) or vehicle (dimethyl sulfoxide/Tween-80/Saline). Following surgical recovery, DNMS training was resumed with the imposition of gradually longer delays (1-30 sec). The number of days required to achieve stable performance with either increasing length of delay or reversal of task contingency was compared between vehicle and rimonabant-treated rats. Following the completion of DNMS training, animals were euthanized, and both hippocampi were harvested for gene expression assay analysis. Rimonabant treatment animals required more time to achieve stable DNMS performance than vehicle-treated controls. Quantitative real-time polymerase chain reaction analysis revealed that the expressions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, brain-derived neurotrophic factor, and synapsin 1 (Syn1) were significantly increased. These results are consistent with rimonabant increasing mRNAs for proteins associated with hippocampal synapse remodeling, but that those alterations did not necessarily accelerate the acquisition of an operant behavioral task that required learning new contingencies.

3.
Front Physiol ; 9: 785, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013484

RESUMEN

Swallow-breathing coordination safeguards the lower airways from tracheal aspiration of bolus material as it moves through the pharynx into the esophagus. Impaired movements of the shared muscles or structures of the aerodigestive tract, or disruptions in the interaction of brainstem swallow and respiratory central pattern generators (CPGs) result in dysphagia. To maximize lower airway protection these CPGs integrate respiratory rhythm generation signals and vagal afferent feedback to synchronize swallow with breathing. Despite extensive study, the roles of central respiratory activity and vagal feedback from the lungs as key elements for effective swallow-breathing coordination remain unclear. The effect of altered timing of bronchopulmonary vagal afferent input on swallows triggered during electrical stimulation of the superior laryngeal nerves or by injection of water into the pharyngeal cavity was studied in decerebrate, paralyzed, and artificially ventilated cats. We observed two types of single swallows that produced distinct effects on central respiratory-rhythm across all conditions: post-inspiratory type swallows disrupted central-inspiratory activity without affecting expiration, whereas expiratory type swallows prolonged expiration without affecting central-inspiratory activity. Repetitive swallows observed during apnea reset the E2 phase of central respiration and produced facilitation of swallow motor output nerve burst durations. Moreover, swallow initiation was negatively modulated by vagal feedback and was reset by lung inflation. Collectively, these findings support a novel model of reciprocal inhibition between the swallow CPG and inspiratory or expiratory cells of the respiratory CPG where lung distension and phases of central respiratory activity represent a dual peripheral and central gating mechanism of swallow-breathing coordination.

4.
J Neurophysiol ; 119(2): 700-722, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046425

RESUMEN

We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the frequency and depth of breathing through parallel circuit operations targeting the ventral respiratory column. Responses to stimulation of the chemoreceptors and identified functional connectivity support differential tuning of inspiratory neuron burst duration and firing rate and a model of brain stem network architecture incorporating tonic expiratory "hub" neurons regulated by convergent neuronal chains and loops through rostral lateral tegmental field neurons with quasi-periodic discharge patterns.


Asunto(s)
Cuerpo Carotídeo/fisiología , Bulbo Raquídeo/fisiología , Respiración , Formación Reticular/fisiología , Animales , Gatos , Femenino , Masculino , Bulbo Raquídeo/citología , Nervio Frénico/fisiología , Formación Reticular/citología
5.
J Mol Cell Cardiol ; 59: 117-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23471032

RESUMEN

The sequential glycosylation process typically ends with sialic acid residues added through trans-Golgi sialyltransferase activity. Individuals afflicted with congenital disorders of glycosylation often have reduced glycoprotein sialylation and present with multi-system symptoms including hypotonia, seizures, arrhythmia and cardiomyopathy. Cardiac voltage-gated Na(+) channel (Nav) activity can be influenced by sialic acids likely contributing to an external surface potential causing channels to gate at less depolarized voltages. Here, a possible pathophysiological role for reduced sialylation is investigated by questioning the impact of gene deletion of the uniformly expressed beta-galactoside alpha-2,3-sialyltransferase 4 (ST3Gal4) on cardiac Nav activity, cellular refractory period and ventricular conduction. Whole-cell patch-clamp experiments showed that ventricular Nav from ST3Gal4 deficient mice (ST3Gal4(-/-)) gated at more depolarized potentials, inactivated more slowly and recovered from fast inactivation more rapidly than WT controls. Current-clamp recordings indicated a 20% increase in time to action potential peak and a 30ms decrease in ST3Gal4(-/-) myocyte refractory period, concurrent with increased Nav recovery rate. Nav expression, distribution and maximal Na(+) current levels were unaffected by ST3Gal4 expression, indicating that reduced sialylation does not impact Nav surface expression and distribution. However, enzymatic desialylation suggested that ST3Gal4(-/-) ventricular Nav are less sialylated. Consistent with the shortened myocyte refractory period, epicardial conduction experiments using optical mapping techniques demonstrated a 27% reduction in minimum ventricular refractory period and increased susceptibility to arrhythmias in ST3Gal4(-/-) ventricles. Thus, deletion of a single sialyltransferase significantly impacts ventricular myocyte electrical signaling. These studies offer insight into diseases of glycosylation that are often associated with pathological changes in excitability and highlight the importance of glycosylation in cardiac physiology.


Asunto(s)
Potenciales de Acción/fisiología , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/metabolismo , Sialiltransferasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/genética , Animales , Western Blotting , Células Cultivadas , Electrofisiología , Glicosilación , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Sialiltransferasas/genética , Canales de Sodio Activados por Voltaje/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...