Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 11: 365, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213230

RESUMEN

The pannexin family of channels consists of three members-pannexin-1 (Panx1), pannexin-2 (Panx2), and pannexin-3 (Panx3) that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system) and PNS (peripheral nervous system), coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain) pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG) neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

2.
Cytoskeleton (Hoboken) ; 72(4): 193-206, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25809276

RESUMEN

Acute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response. Cells were exposed to hyper- or hypoosmotic media and morphological and cytoskeletal responses were recorded. Hyperosmotic shock resulted in a drop in cell body volume and planar area, a persisting shape deformation, and increases in cellular translocation. Hypoosmotic shock did not significantly alter planar area, but caused a transient increase in cell body volume and an increase in cellular translocation via the development of small protrusions rich in actin. Disruption of the actin-myosin network with latrunculin and blebbistatin resulted in changes to volume and shape regulation, and a decrease in cellular translocation. In both osmotic perturbations, no apparent disruptions to cytoskeletal integrity were observed by light microscopy. Overall, because osmotically induced changes persisted even after volume regulation occurred, it is possible that osmotic stress may play a larger role in neurological dysfunction than currently believed.


Asunto(s)
Actinas/metabolismo , Forma de la Célula/fisiología , Citoesqueleto/metabolismo , Miosinas/metabolismo , Neuronas/metabolismo , Presión Osmótica/fisiología , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Presión Osmótica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...