Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 106: 86-92, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414094

RESUMEN

In this study, we developed and validated a single-shank silicon-based neural probe with 128 closely-packed microelectrodes suitable for high-resolution extracellular recordings. The 8-mm-long, 100-µm-wide and 50-µm-thick implantable shank of the probe fabricated using a 0.13-µm complementary metal-oxide-semiconductor (CMOS) metallization technology contains square-shaped (20 × 20 µm2), low-impedance (~ 50 kΩ at 1 kHz) recording sites made of rough and porous titanium nitride which are arranged in a 32 × 4 dense array with an inter-electrode pitch of 22.5 µm. The electrophysiological performance of the probe was tested in in vivo experiments by implanting it acutely into neocortical areas of anesthetized animals (rats, mice and cats). We recorded local field potentials, single- and multi-unit activity with superior quality from all layers of the neocortex of the three animal models, even after reusing the probe in multiple (> 10) experiments. The low-impedance electrodes monitored spiking activity with high signal-to-noise ratio; the peak-to-peak amplitude of extracellularly recorded action potentials of well-separable neurons ranged from 0.1 mV up to 1.1 mV. The high spatial sampling of neuronal activity made it possible to detect action potentials of the same neuron on multiple, adjacent recording sites, allowing a more reliable single unit isolation and the investigation of the spatiotemporal dynamics of extracellular action potential waveforms in greater detail. Moreover, the probe was developed with the specific goal to use it as a tool for the validation of electrophysiological data recorded with high-channel-count, high-density neural probes comprising integrated CMOS circuitry.


Asunto(s)
Técnicas Biosensibles , Corteza Cerebral/fisiología , Neuronas/fisiología , Animales , Gatos , Impedancia Eléctrica , Ratones , Ratas , Semiconductores , Silicio/química , Titanio/química
2.
Biomed Tech (Berl) ; 63(3): 301-315, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29478038

RESUMEN

Stereo-electroencephalography depth electrodes, regularly implanted into drug-resistant patients with focal epilepsy to localize the epileptic focus, have a low channel count (6-12 macro- or microelectrodes), limited spatial resolution (0.5-1 cm) and large contact area of the recording sites (~mm2). Thus, they are not suited for high-density local field potential and multiunit recordings. In this paper, we evaluated the long-term electrophysiological recording performance and histocompatibility of a neural interface consisting of 32 microelectrodes providing a physical shape similar to clinical devices. The cylindrically-shaped depth probes made of polyimide (PI) were chronically implanted for 13 weeks into the brain of rats, while cortical or thalamic activity (local field potentials, single-unit and multi-unit activity) was recorded regularly to monitor the temporal change of several features of the electrophysiological performance. To examine the tissue reaction around the probe, neuron-selective and astroglia-selective immunostaining methods were applied. Stable single-unit and multi-unit activity were recorded for several weeks with the implanted depth probes and a weak or moderate tissue reaction was found around the probe track. Our data on biocompatibility presented here and in vivo experiments in non-human primates provide a strong indication that this type of neural probe can be applied in stereo-electroencephalography recordings of up to 2 weeks in humans targeting the localization of epileptic foci providing an increased spatial resolution and the ability to monitor local field potentials and neuronal spiking activity.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Neuronas/fisiología , Polímeros/química , Animales , Materiales Biocompatibles , Humanos , Microelectrodos , Ratas
3.
J Neurophysiol ; 116(5): 2312-2330, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27535370

RESUMEN

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Electrodos Implantados , Red Nerviosa/fisiología , Silicio , Tálamo/fisiología , Estimulación Acústica/métodos , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Optogenética/métodos , Ratas , Ratas Wistar
4.
Eur J Neurosci ; 44(3): 1935-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177594

RESUMEN

Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation.


Asunto(s)
Ondas Encefálicas , Corteza Somatosensorial/fisiología , Analgésicos/farmacología , Animales , Potenciales Evocados Somatosensoriales , Femenino , Ketamina/farmacología , Masculino , Ratas , Ratas Wistar , Corteza Somatosensorial/efectos de los fármacos , Xilazina/farmacología
5.
Biomed Tech (Berl) ; 59(4): 283-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24114890

RESUMEN

In this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the potential of the EDC devices to record good-quality local field potentials, and single- and multiple-unit activities in cortical regions during pharmacologically induced cortical slow wave activity in an animal model.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Electrodos Implantados , Electroencefalografía/instrumentación , Sistemas Microelectromecánicos/instrumentación , Microelectrodos , Neuronas/fisiología , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
J Neurosci ; 31(10): 3821-7, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389237

RESUMEN

We examined how changes in intensity and interaural time difference (ITD) influenced the coding of low-frequency sounds in the inferior colliculus of male gerbils at both the single neuron and population levels. We found that changes in intensity along the positive slope of the rate-level function (RLF) evoked changes in spectrotemporal filtering that influenced the overall timing of spike events but preserved their precision across trials such that the decoding of single neuron responses was not affected. In contrast, changes in ITD did not trigger changes in spectrotemporal filtering, but did have strong effects on the precision of spike events and, consequently, on decoder performance. However, changes in ITD had opposing effects in the two brain hemispheres and, thus, canceled out at the population level. These results were similar with and without the addition of background noise. We also found that the effects of changes in intensity along the negative slope of the RLF were different from the effects of changes in intensity along the positive slope in that they evoked changes in both spectrotemporal filtering and in the precision of spike events across trials, as well as in decoder performance. These results demonstrate that, at least at moderate intensities, the auditory system employs different strategies at the single neuron and population levels simultaneously to ensure that the coding of sounds is robust to changes in other stimulus features.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Colículos Inferiores/fisiología , Neuronas/fisiología , Estimulación Acústica , Animales , Electrofisiología , Gerbillinae , Masculino , Tiempo de Reacción/fisiología
7.
Neural Netw ; 23(6): 728-32, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20488662

RESUMEN

Recent advances in multi-electrode recording and imaging techniques have made it possible to observe the activity of large populations of neurons. However, to take full advantage of these techniques, new methods for the analysis of population responses must be developed. In this paper, we present an algorithm for optimizing population decoding with distance metrics. To demonstrate the utility of this algorithm under experimental conditions, we evaluate its performance in decoding both population spike trains and calcium signals with different correlation structures. Our results demonstrate that the optimized decoder outperforms other simple population decoders and suggest that optimization could serve as a tool for quantifying the potential contribution of individual cells to the population code.


Asunto(s)
Electrofisiología/métodos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Neurofisiología/métodos , Procesamiento de Señales Asistido por Computador , Potenciales de Acción/fisiología , Algoritmos , Animales , Simulación por Computador , Electrofisiología/instrumentación , Gerbillinae , Neuronas/fisiología , Neurofisiología/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...