RESUMEN
INTRODUCTION: There are no published data on the long-term impact of invasive group B Streptococcus disease (iGBS) on economic costs or health-related quality of life (HRQoL) in low-income and middle-income countries. We assessed the impact of iGBS on healthcare utilisation, costs and HRQoL in Argentina, India, Kenya, Mozambique and South Africa. METHODS: Inpatient and outpatient visits, out-of-pocket (OOP) healthcare payments in the 12 months before study enrolment, and health-state utility of children and caregivers (using the EuroQol 5-Dimensions-3-Level) were collected from iGBS survivors and an unexposed cohort matched on site, age at recruitment and sex. We used logistic or Poisson regression for analysing healthcare utilisation and zero-inflated gamma regression models for family and health system costs. For HRQoL, we used a zero-inflated beta model of disutility pooled data. RESULTS: 161 iGBS-exposed and 439 unexposed children and young adults (age 1-20) were included in the analysis. Compared with unexposed participants, iGBS was associated with increased odds of any healthcare utilisation in India (adjusted OR 11.2, 95% CI 2.9 to 43.1) and Mozambique (6.8, 95% CI 2.2 to 21.1) and more frequent healthcare visits (adjusted incidence rate ratio (IRR) for India 1.7 (95% CI 1.4 to 2.2) and for Mozambique 6.0 (95% CI 3.2 to 11.2)). iGBS was also associated with more frequent days in inpatient care in India (adjusted IRR 4.0 (95% CI 2.3 to 6.8) and Kenya 6.4 (95% CI 2.9 to 14.3)). OOP payments were higher in the iGBS cohort in India (adjusted mean: Int$682.22 (95% CI Int$364.28 to Int$1000.16) vs Int$133.95 (95% CI Int$72.83 to Int$195.06)) and Argentina (Int$244.86 (95% CI Int$47.38 to Int$442.33) vs Int$52.38 (95% CI Int$-1.39 to Int$106.1)). For all remaining sites, differences were in the same direction but not statistically significant for almost all outcomes. Health-state disutility was higher in iGBS survivors (0.08, 0.04-0.13 vs 0.06, 0.02-0.10). CONCLUSION: The iGBS health and economic burden may persist for years after acute disease. Larger studies are needed for more robust estimates to inform the cost-effectiveness of iGBS prevention.
Asunto(s)
Países en Desarrollo , Calidad de Vida , Infecciones Estreptocócicas , Humanos , Masculino , Femenino , Niño , Mozambique , Infecciones Estreptocócicas/economía , Preescolar , Lactante , Adolescente , Kenia , Adulto Joven , India , Estudios de Cohortes , Streptococcus agalactiae , Aceptación de la Atención de Salud/estadística & datos numéricos , Sudáfrica , Argentina , Costos de la Atención en Salud/estadística & datos numéricosRESUMEN
OBJECTIVE: To define major congenital anomaly (CA) subgroups and assess outcome variability based on defined subgroups. STUDY DESIGN: This population-based cohort study used registries in Denmark for children born with a major CA between January 1997 and December 2016, with follow-up until December 2018. We performed a latent class analysis (LCA) using child and family clinical and sociodemographic characteristics present at birth, incorporating additional variables occurring until age of 24 months. Cox proportional hazards regression models estimated hazard ratios (HRs) of pediatric mortality and intensive care unit (ICU) admissions for identified LCA classes. RESULTS: The study included 27 192 children born with a major CA. Twelve variables led to a 4-class solution (entropy = 0.74): (1) children born with higher income and fewer comorbidities (55.4%), (2) children born to young mothers with lower income (24.8%), (3) children born prematurely (10.0%), and (4) children with multiorgan involvement and developmental disability (9.8%). Compared with those in Class 1, mortality and ICU admissions were highest in Class 4 (HR = 8.9, 95% CI = 6.4-12.6 and HR = 4.1, 95% CI = 3.6-4.7, respectively). More modest increases were observed among the other classes for mortality and ICU admissions (Class 2: HR = 1.7, 95% CI = 1.1-2.5 and HR = 1.3, 95% CI = 1.1-1.4, respectively; Class 3: HR = 2.5, 95% CI = 1.5-4.2 and HR = 1.5, 95% CI = 1.3-1.9, respectively). CONCLUSIONS: Children with a major CA can be categorized into meaningful subgroups with good discriminative ability. These groupings may be useful for risk-stratification in outcome studies.
Asunto(s)
Anomalías Congénitas , Análisis de Clases Latentes , Sistema de Registros , Humanos , Femenino , Masculino , Lactante , Dinamarca/epidemiología , Recién Nacido , Anomalías Congénitas/mortalidad , Preescolar , Estudios de Cohortes , Admisión del Paciente/estadística & datos numéricos , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Mortalidad del Niño , Modelos de Riesgos ProporcionalesRESUMEN
OBJECTIVE: We aimed to compare the prevalence and neonatal mortality associated with large for gestational age (LGA) and macrosomia among 115.6 million live births in 15 countries, between 2000 and 2020. DESIGN: Population-based, multi-country study. SETTING: National healthcare systems. POPULATION: Liveborn infants. METHODS: We used individual-level data identified for the Vulnerable Newborn Measurement Collaboration. We calculated the prevalence and relative risk (RR) of neonatal mortality among live births born at term + LGA (>90th centile, and also >95th and >97th centiles when the data were available) versus term + appropriate for gestational age (AGA, 10th-90th centiles) and macrosomic (≥4000, ≥4500 and ≥5000 g, regardless of gestational age) versus 2500-3999 g. INTERGROWTH 21st served as the reference population. MAIN OUTCOME MEASURES: Prevalence and neonatal mortality risks. RESULTS: Large for gestational age was common (median prevalence 18.2%; interquartile range, IQR, 13.5%-22.0%), and overall was associated with a lower neonatal mortality risk compared with AGA (RR 0.83, 95% CI 0.77-0.89). Around one in ten babies were ≥4000 g (median prevalence 9.6% (IQR 6.4%-13.3%), with 1.2% (IQR 0.7%-2.0%) ≥4500 g and with 0.2% (IQR 0.1%-0.2%) ≥5000 g). Overall, macrosomia of ≥4000 g was not associated with increased neonatal mortality risk (RR 0.80, 95% CI 0.69-0.94); however, a higher risk was observed for birthweights of ≥4500 g (RR 1.52, 95% CI 1.10-2.11) and ≥5000 g (RR 4.54, 95% CI 2.58-7.99), compared with birthweights of 2500-3999 g, with the highest risk observed in the first 7 days of life. CONCLUSIONS: In this population, birthweight of ≥4500 g was the most useful marker for early mortality risk in big babies and could be used to guide clinical management decisions.
RESUMEN
OBJECTIVE: To compare neonatal mortality associated with six novel vulnerable newborn types in 125.5 million live births across 15 countries, 2000-2020. DESIGN: Population-based, multi-country study. SETTING: National data systems in 15 middle- and high-income countries. METHODS: We used individual-level data sets identified for the Vulnerable Newborn Measurement Collaboration. We examined the contribution to neonatal mortality of six newborn types combining gestational age (preterm [PT] versus term [T]) and size-for-gestational age (small [SGA], <10th centile, appropriate [AGA], 10th-90th centile or large [LGA], >90th centile) according to INTERGROWTH-21st newborn standards. Newborn babies with PT or SGA were defined as small and T + LGA was considered as large. We calculated risk ratios (RRs) and population attributable risks (PAR%) for the six newborn types. MAIN OUTCOME MEASURES: Mortality of six newborn types. RESULTS: Of 125.5 million live births analysed, risk ratios were highest among PT + SGA (median 67.2, interquartile range [IQR] 45.6-73.9), PT + AGA (median 34.3, IQR 23.9-37.5) and PT + LGA (median 28.3, IQR 18.4-32.3). At the population level, PT + AGA was the greatest contributor to newborn mortality (median PAR% 53.7, IQR 44.5-54.9). Mortality risk was highest among newborns born before 28 weeks (median RR 279.5, IQR 234.2-388.5) compared with babies born between 37 and 42 completed weeks or with a birthweight less than 1000 g (median RR 282.8, IQR 194.7-342.8) compared with those between 2500 g and 4000 g as a reference group. CONCLUSION: Preterm newborn types were the most vulnerable, and associated with the highest mortality, particularly with co-existence of preterm and SGA. As PT + AGA is more prevalent, it is responsible for the greatest burden of neonatal deaths at population level.
RESUMEN
OBJECTIVE: To examine the prevalence of novel newborn types among 165 million live births in 23 countries from 2000 to 2021. DESIGN: Population-based, multi-country analysis. SETTING: National data systems in 23 middle- and high-income countries. POPULATION: Liveborn infants. METHODS: Country teams with high-quality data were invited to be part of the Vulnerable Newborn Measurement Collaboration. We classified live births by six newborn types based on gestational age information (preterm <37 weeks versus term ≥37 weeks) and size for gestational age defined as small (SGA, <10th centile), appropriate (10th-90th centiles), or large (LGA, >90th centile) for gestational age, according to INTERGROWTH-21st standards. We considered small newborn types of any combination of preterm or SGA, and term + LGA was considered large. Time trends were analysed using 3-year moving averages for small and large types. MAIN OUTCOME MEASURES: Prevalence of six newborn types. RESULTS: We analysed 165 017 419 live births and the median prevalence of small types was 11.7% - highest in Malaysia (26%) and Qatar (15.7%). Overall, 18.1% of newborns were large (term + LGA) and was highest in Estonia 28.8% and Denmark 25.9%. Time trends of small and large infants were relatively stable in most countries. CONCLUSIONS: The distribution of newborn types varies across the 23 middle- and high-income countries. Small newborn types were highest in west Asian countries and large types were highest in Europe. To better understand the global patterns of these novel newborn types, more information is needed, especially from low- and middle-income countries.
RESUMEN
Background: Data are limited regarding long-term consequences of invasive GBS (iGBS) disease in early infancy, especially from low- and middle-income countries (LMIC) where most cases occur. We aimed to estimate risk of neurodevelopmental impairment (NDI) in children with a history of iGBS disease. Methods: A multi-country matched cohort study was undertaken in South Africa, India, Mozambique, Kenya, and Argentina from October 2019 to April 2021. The exposure of interest was defined as a history of iGBS disease (sepsis or meningitis) before 90 days of age, amongst children now aged 1·5-18 years. Age and sex-matched, children without history of GBS were also recruited. Age-appropriate, culturally-adapted assessments were used to define NDI across multiple domains (cognitive, motor, hearing, vision, emotional-behaviour, growth). Pooled NDI risk was meta-analysed across sites. Association of iGBS exposure and NDI outcome was estimated using modified Poisson regression with robust variance estimator. Findings: Amongst 138 iGBS survivors and 390 non-iGBS children, 38·1% (95% confidence interval [CI]: 30·0% - 46·6%) of iGBS children had any NDI, compared to 21·7% (95% CI: 17·7% - 26·0%) of non- iGBS children, with notable between-site heterogeneity. Risk of moderate/severe NDI was 15·0% (95% CI: 3·4% - 30·8%) among GBS-meningitis, 5·6% (95% CI: 1·5% - 13·7%) for GBS-sepsis survivors. The adjusted risk ratio (aRR) for moderate/severe NDI among iGBS survivors was 1.27 (95% CI: 0.65, 2.45), when compared to non-GBS children. Mild impairment was more frequent in iGBS (27.6% (95% CI: 20.3 - 35.5%)) compared to non-GBS children (12.9% (95% CI: 9.7% - 16.4%)). The risk of emotional-behavioural problems was similar irrespective of iGBS exposure (aRR=0.98 (95% CI: 0.55, 1.77)). Interpretation: Our findings suggest that iGBS disease is on average associated with a higher risk of moderate/severe NDI, however substantial variation in risk was observed between sites and data are consistent with a wide range of values. Our study underlines the importance of long-term follow-up for at-risk neonates and more feasible, standardised assessments to facilitate diagnosis in research and clinical practice. Funding: This work was supported by a grant (INV-009018) from the Bill & Melinda Gates Foundation to the London School of Hygiene &Tropical Medicine.